Loading [MathJax]/extensions/MathZoom.js
Multiple Observer Adaptive Fusion for Uncertainty Estimation and Its Application to Wheel Velocity Systems | IEEE Journals & Magazine | IEEE Xplore

Multiple Observer Adaptive Fusion for Uncertainty Estimation and Its Application to Wheel Velocity Systems


Abstract:

Uncertainty estimation in real-world scenarios is challenged by complexities arising from peaking phenomena and measurement noises. This article introduces a novel scheme...Show More

Abstract:

Uncertainty estimation in real-world scenarios is challenged by complexities arising from peaking phenomena and measurement noises. This article introduces a novel scheme for practical uncertainty estimation to mitigate peaking dynamics and enhance overall dynamic behavior. A fusion estimation framework for lumped uncertainties using multiple extended state observers (ESOs) is constructed, and the low-frequency adaptive parameter learning technique is employed to approximate the optimal fusion. The adaptive fusion estimation not only attenuates transient peaks in uncertainty estimation but also attains fast convergence and high accuracy under the high-gain scheduling of ESOs. Furthermore, the robustness of uncertainty estimation against measurement noises is enhanced by cascading filters in the proposed adaptive fusion framework for multiple ESOs. Extensive theoretical analyses are executed to verify practical applicability in peak and noise rejection. Finally, simulations and experiments on the wheel velocity system of a mobile robot are conducted to test the validity and feasibility.
Published in: IEEE Transactions on Cybernetics ( Volume: 54, Issue: 9, September 2024)
Page(s): 5429 - 5440
Date of Publication: 10 April 2024

ISSN Information:

PubMed ID: 38598405

Funding Agency:

References is not available for this document.

I. Introduction

Uncertainties are prevalent in cyber-physical systems, undermining their dynamics [1], [2], [3], [4], [5], [6], [7], [8]. Uncertainty estimation can recover disturbances and unknown dynamics from measured outputs. System uncertainties are directly compensated online, enhancing control behavior and robustness. Various uncertainty estimators (UEs) address unknown system uncertainties, for example, disturbance interval observer (DIO) [9], disturbance observer (DO) [10], uncertainty and disturbance estimation (UDE) [11], extended state observer (ESO) [12], sliding mode DO (SMDO) [13], and others.

Select All
1.
H. Sun, R. Madonski, S. Li, Y. Zhang and W. Xue, "Composite control design for systems with uncertainties and noise using combined extended state observer and Kalman filter", IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 4119-4128, Apr. 2022.
2.
A. Merabet, S. Kanukollu, A. Al-Durra and E. F. El-Saadany, "Adaptive recurrent neural network for uncertainties estimation in feedback control system", J. Autom. Intell., vol. 2, no. 3, pp. 119-129, Aug. 2023.
3.
B. Ning, Q.-L. Han and X. Ge, "Practical bipartite consensus for multi-agent systems: A barrier function-based adaptive sliding-mode control approach", J. Autom. Intell., vol. 2, no. 1, pp. 14-19, Feb. 2023.
4.
D. Xu, Z. Cheng, W. Yang and W. Zhang , "Robust nonlinear control for virtual synchronous generator based on exact feedback linearization", Int. J. Innov. Comput. I Control, vol. 18, no. 4, pp. 1133-1145, Aug. 2022.
5.
X. Su, C. Wang, H. Chang, Y. Yang and W. Assawinchaichote, "Event-triggered sliding mode control of networked control systems with Markovian jump parameters", Automatica, vol. 112, Mar. 2021.
6.
X. Su, Y. Wen, P. Shi, S. Wang and W. Assawinchaichote, "Event-triggered fuzzy control for nonlinear systems via sliding mode approach", IEEE Trans. Fuzzy Syst., vol. 29, no. 2, pp. 336-344, Feb. 2021.
7.
J. Tang and X. Song, "Immersion and invariance adaptive robust control for a class of nonlinear systems with uncertainties and disturbances", Int. J. Innov. Comput. I Control, vol. 19, no. 5, pp. 1561-1571, Oct. 2023.
8.
J. Zhang, C. Cui, S. Gu, T. Wang and L. Zhao, "Trajectory tracking control of pneumatic servo system: A variable gain ADRC approach", IEEE Trans. Cybern., vol. 23, no. 11, pp. 6977-6986, Nov. 2023.
9.
W.-H. Chen, J. Yang, L. Guo and S. Li, "Disturbance-observer-based control and related methods—An overview", IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1083-1095, Feb. 2016.
10.
K. Yong, M. Chen and Q. Wu, "Anti-disturbance control for nonlinear systems based on interval observer", IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1261-1269, Feb. 2020.
11.
Q.-C. Zhong, A. Kuperman and R.-K. Stobart, "Design of UDE-based controllers from their two-degree-of-freedom nature", Int. J. Robust Nonlinear Control, vol. 17, no. 21, pp. 1994-2008, 2011.
12.
C. Ren, Y. Ding, L. Hu, J. Liu, Z. Ju and S. Ma, "Active disturbance rejection control of Euler-Lagrange systems exploiting internal damping", IEEE Trans. Cybern., vol. 52, no. 6, pp. 4334-4345, Jun. 2022.
13.
Z. Zheng, X. Su, T. Jiang and J. Huang, "Robust dynamic geofencing attitude control for quadrotor systems", IEEE Trans. Ind. Electron., vol. 70, no. 2, pp. 1861-1869, Feb. 2023.
14.
M. Song, F. Zhang, B. Huang and P. Huang, "Anti-disturbance control for tethered aircraft system with deferred output constraints", IEEE/CAA J. Automatica Sinica, vol. 10, no. 2, pp. 474-485, Feb. 2023.
15.
X. Han, G. Liu, Y. Le, B. Dong and S. Zheng, "Unbalanced magnetic pull disturbance compensation of magnetic bearing systems in MSCCs", IEEE Trans. Ind. Electron., vol. 70, no. 4, pp. 4088-4097, Apr. 2023.
16.
W. Lin, Z. Zhang, X. Yu, J. Qiu, I. Rudas, H. Gao, et al., "Adaptive extended state observer-based velocity-free servo tracking control with friction compensation", IEEE Trans. Syst. Man Cybern. Syst., vol. 54, no. 1, pp. 2-11, Jan. 2024.
17.
H. Wang, Z. Zuo, Y. Wang and H. Yang, "Composite nonlinear path-following control for unmanned ground vehicles with anti-windup ESO", IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 9, pp. 5865-5876, Sep. 2022.
18.
C. Zhang, D. Xu, J. Ma and H. Chen, "A new fast control strategy of terminal sliding mode with nonlinear extended state observer for voltage source inverter", Sensors, vol. 23, no. 8, pp. 3951, Apr. 2023.
19.
Q. Qin, G. Gao and J. Zhong, "Finite-time adaptive extended state observer-based dynamic sliding mode control for hybrid robots", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 69, no. 9, pp. 3784-3788, Sep. 2022.
20.
Y. Wang, H. Yu and Y. Liu, "Speed-current single-loop control with overcurrent protection for PMSM based on time-varying nonlinear disturbance observer", IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 179-189, Jan. 2022.
21.
Y. Cheng, X. Ren, D. Zheng and L. Li, "Non-linear bandwidth extended-state-observer based non-smooth funnel control for motor-drive servo systems", IEEE Trans. Ind. Electron., vol. 69, no. 6, pp. 6215-6224, Jun. 2022.
22.
H. Wang, Z. Zuo, Y. Wang, H. Yang and C. Hu, "Estimator-based turning control for unmanned ground vehicles: An anti-peak extended state observer approach", IEEE Trans. Veh. Technol., vol. 71, no. 12, pp. 12489-12498, Dec. 2022.
23.
B. Qin, H. Yan, H. Zhang, Y. Wang and S.-X. Yang, "Enhanced reduced-order extended state observer for motion control of differential driven mobile robot", IEEE Trans. Cybern., vol. 53, no. 2, pp. 1299-1310, Feb. 2023.
24.
Z.-H. Wu, F. Deng, B.-Z. Guo, C. Wu and Q. Xiang, "Backstepping active disturbance rejection control for lower triangular nonlinear systems with mismatched stochastic disturbances", IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 4, pp. 2688-2702, Apr. 2022.
25.
M. Ran, J. Li and L. Xie, "A new extended state observer for uncertain nonlinear systems", Automatica, vol. 131, Sep. 2021.
26.
K. Rsetam, Z. Cao and Z. Man, "Design of robust terminal sliding mode control for underactuated flexible joint robot", IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 7, pp. 4272-4285, Jul. 2022.
27.
M. Shakarami, K. Esfandiari, A.-A. Suratgar and H.-A. Talebi, "Peaking attenuation of high-gain observers using adaptive techniques: State estimation and feedback control", IEEE Trans. Autom. Control, vol. 65, no. 10, pp. 4125-4229, Oct. 2020.
28.
W. Xue, X. Zhang, L. Sun and H. Fang, "Extended state filter-based disturbance and uncertainty mitigation for nonlinear uncertain systems with application to fuel cell temperature control", IEEE Trans. Ind. Electron., vol. 67, no. 12, pp. 10682-10692, Dec. 2020.
29.
T. Yucelen and W.-M. Haddad, "Low-frequency learning and fast adaptation in model reference adaptive control", IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 1080-1085, Apr. 2013.
30.
D. Astolfi, L. Marconi, L. Praly and A. Teel, "Sensitivity to high-frequency measurement noise of nonlinear high-gain observers", IFAC-PapersOnLine, vol. 49, no. 18, pp. 862-866, 2016.
Contact IEEE to Subscribe

References

References is not available for this document.