Loading web-font TeX/Math/Italic
A Partially Feedback NSSAR Embedded Third-Order Delta–Sigma Modulator With Gain-Boosted Two-Stage FIAs | IEEE Journals & Magazine | IEEE Xplore

A Partially Feedback NSSAR Embedded Third-Order Delta–Sigma Modulator With Gain-Boosted Two-Stage FIAs


Abstract:

This article presents a switched-capacitor (SC) delta–sigma modulator (DSM) for low-power and high-precision applications. With a 5-bit noise-shaping (NS) successive-appr...Show More

Abstract:

This article presents a switched-capacitor (SC) delta–sigma modulator (DSM) for low-power and high-precision applications. With a 5-bit noise-shaping (NS) successive-approximation-register (NSSAR) quantizer embedded in the 2nd-order loop filter, the system achieves a stable 3rd-order noise transfer function (NTF) without coefficient scaling. Partial feedback with digital filters is adopted, which only feeds back the 3 MSBs, leading to a fourfold reduction of data-weighted-averaging (DWA) complexity. To mitigate the noise leakage, a gain-boosted two-stage floating inverter amplifier (FIA) with 87.2-dB open-loop gain is proposed with the assistance of the Correlated-level-shifting (CLS) technique. The stability and noise performance of the FIA are also optimized. Fabricated in a 55-nm CMOS process, the prototype analog-to-digital converter (ADC) achieves a measured 93.7-dB signal to noise and distortion ratio (SNDR) in a 10-kHz bandwidth at 800 kS/s at a oversampling ratio (OSR) of 40. With 33.2- \mu \text{W} power consumption, it achieves an SNDR-based Schreier figure of merit (FoM) of 178.5 dB and a Walden FoM of 41.9 fJ/conv, demonstrating state-of-the-art energy efficiency. Furthermore, the prototype exhibits fully dynamic characteristics and capabilities to a higher dynamic range (DR).
Published in: IEEE Journal of Solid-State Circuits ( Volume: 59, Issue: 9, September 2024)
Page(s): 2735 - 2746
Date of Publication: 04 April 2024

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Flourishing development of smart sensors and the Internet-of-Things (IoT) applications are strongly expecting high dynamic-range (DR) analog-to-digital converters (ADCs) with micro-power consumptions. Beneficial from oversampling and noise-shaping (NS), switched-capacitor (SC) modulators have already shown outstanding performance in this scenario for their dynamic operation, process robustness, and clock jitter immunity [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. Nevertheless, integrators based on power-hungry operational transconductance amplifiers (OTAs) are the bottleneck of power reduction [1], [2], [3], [4], [5], [6], [7]. Noise-shaping (NS) successive-approximation-register (NSSAR) ADCs combine the benefits of delta–sigma modulator (DSM) and SAR, demonstrating excellent power efficiency over a wide range of signal frequencies. However, the mitigation of element mismatch relies on either off-chip foreground calibration or on-chip methods like dynamic element matching (DEM) [12], which improve the linearity at the cost of indispensable digital logic overhead and mismatch error shaping (MES) [13], [14], [15], which is much efficient but requires compensation techniques to maintain the full-scale input range. Zoom ADCs also have gained popularity for the appropriate tradeoff among resolution, power, and design complexity. However, the signal to quantization noise ratio (SQNR) loss caused by the over ranging and the out-of-band interference are knotty issues [5], [6], [7].

Select All
1.
Y. Chae, K. Souri and K. A. A. Makinwa, " A 6.3 μ W 20 bit incremental zoom-ADC with 6 ppm INL and 1 μ V offset ", IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3019-3027, Dec. 2013.
2.
C. Y. Lee and U.-K. Moon, " A 0.0375 mm 2 203.5 μ W 108.8dB DR DT single-loop DSM audio ADC using a single-ended ring-amplifier-based integrator in 180 nm CMOS ", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 65, pp. 412-414, Feb. 2022.
3.
Y. Chae and G. Han, "Low voltage low power inverter-based switched-capacitor delta-sigma modulator", IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 458-472, Feb. 2009.
4.
K. Lee, M. R. Miller and G. C. Temes, "An 8.1 mW 82 dB delta-sigma ADC with 1.9 MHz BW and −98 dB THD", IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2202-2211, Aug. 2009.
5.
E. Eland, S. Karmakar, B. Gönen, R. van Veldhoven and K. A. A. Makinwa, " A 440- μ W 109.8-dB DR 106.5-dB SNDR discrete-time zoom ADC with a 20-kHz BW ", IEEE J. Solid-State Circuits, vol. 56, no. 4, pp. 1207-1215, Apr. 2021.
6.
B. Gönen, F. Sebastiano, R. van Veldhoven and K. A. A. Makinwa, " A 1.65 mW 0.16 mm 2 dynamic zoom-ADC with 107.5dB DR in 20 kHz BW ", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 282-283, Jan. 2016.
7.
S. Karmakar, B. Gònen, F. Sebastiano, R. Van Veldhoven and K. A. A. Makinwa, " A 280 μ W dynamic-zoom ADC with 120dB DR and 118dB SNDR in 1 kHz BW ", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 238-240, Feb. 2018.
8.
L. Meng et al., " A 1.2-V 2.87- μ W 94.0-dB SNDR discrete-time 2–0 MASH delta-sigma ADC ", IEEE J. Solid-State Circuits, vol. 58, no. 6, pp. 1636-1645, Jun. 2023.
9.
M. Zhao et al., " A 4- μ W bandwidth/power scalable delta–sigma modulator based on swing-enhanced floating inverter amplifiers ", IEEE J. Solid-State Circuits, vol. 57, no. 3, pp. 709-718, Mar. 2022.
10.
Y. Liu et al., " A 4.96- μ w 15-bit self-timed dynamic-amplifier-based incremental zoom ADC ", IEEE J. Solid-State Circuits, vol. 58, no. 6, pp. 1646-1656, Jun. 2023.
11.
R. S. A. Kumar, N. Krishnapura and P. Banerjee, "Analysis and design of a discrete-time delta-sigma modulator using a cascoded floating-inverter-based dynamic amplifier", IEEE J. Solid-State Circuits, vol. 57, no. 11, pp. 3384-3395, Nov. 2022.
12.
K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto and K. Sushihara, " A 97.99 dB SNDR 2 kHz BW 37.1 μ W noise-shaping SAR ADC with dynamic element matching and modulation dither effect ", Proc. IEEE Symp. VLSI Circuits (VLSI-Circuits), pp. 1-2, Jun. 2016.
13.
Y.-S. Shu, L.-T. Kuo and T.-Y. Lo, "An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS", IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2928-2940, Dec. 2016.
14.
H. Li, Y. Shen, H. Xin, E. Cantatore and P. Harpe, " A 7.3- μ w 13-ENOB 98-dB SFDR noise-shaping SAR ADC with duty-cycled amplifier and mismatch error shaping ", IEEE J. Solid-State Circuits, vol. 57, no. 7, pp. 2078-2089, Jul. 2022.
15.
K. Hasebe et al., "A 100 kHz-bandwidth 98.3dB-SNDR noise-shaping SAR ADC with improved mismatch error shaping and speed-up techniques", Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits), pp. 56-57, Jun. 2022.
16.
H.-C. Tsai, C.-L. Lo, C.-Y. Ho and Y.-H. Lin, "A 64-fJ/Conv.-step continuous-time ΣΔ modulator in 40-nm CMOS using asynchronous SAR quantizer and digital ΔΣ truncator", IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2637-2648, Nov. 2013.
17.
K. Jeong, S. Ha and M. Je, "A 15.4-ENOB fourth-order truncation-error-shaping NS-SAR-nested ΔΣ modulator with boosted input impedance and range for biosignal acquisition", IEEE J. Solid-State Circuits, vol. 59, no. 2, pp. 528-539, Feb. 2024.
18.
T. C. Leslie and B. Singh, "An improved sigma-delta modulator architecture", Proc. IEEE Int. Symp. Circuits Syst., pp. 372-375, May 1990.
19.
C. C. Lee, E. Alpman, S. Weaver, C.-Y. Lu and J. Rizk, "A 66dB SNDR 15MHz BW SAR assisted ΔΣ ADC in 22nm tri-gate CMOS", Proc. Symp. VLSI Circuits, pp. C64-C65, Jun. 2013.
20.
X. Tang et al., "An energy-efficient comparator with dynamic floating inverter amplifier", IEEE J. Solid-State Circuits, vol. 55, no. 4, pp. 1011-1022, Apr. 2020.
21.
X. Tang, X. Yang, J. Liu, W. Shi, D. Z. Pan and N. Sun, "27.4 A 0.4-to-40MS/s 75.7dB-SNDR fully dynamic event-driven pipelined ADC with 3-stage cascoded floating inverter amplifier", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, pp. 376-378, Feb. 2021.
22.
Y. Kwon, T. Kim, N. Sun and Y. Chae, " A 348- μ W 68.8-dB SNDR 20-MS/s pipelined SAR ADC with a closed-loop two-stage dynamic amplifier ", IEEE Solid-State Circuits Lett., vol. 4, pp. 166-169, 2021.
23.
Y. Hu, Y. Zhao, W. Qu, L. Ye, M. Zhao and Z. Tan, " A 2.87 μ W 1 kHz-BW 94.0dB-SNDR 2–0 MASH ADC using FIA with dynamic-body-biasing assisted CLS technique ", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 65, pp. 410-412, Feb. 2022.
24.
L. Meng, J. Chen, M. Zhao and Z. Tan, " An 18.2 μ W 101.1dB DR fully-dynamic ΔΣ ADC with partially-feedback noise-shaping quantizer and CLS-embedded two-stage FIAs ", Proc. IEEE 49th Eur. Solid State Circuits Conf. (ESSCIRC), pp. 393-396, Sep. 2023.
25.
J. Silva, U.-K. Moon and G. C. Temes, "Low-distortion delta-sigma topologies for MASH architectures", Proc. IEEE Int. Symp. Circuits Syst., pp. 1144, May 2004.
26.
C.-H. Chen, Y. Zhang, T. He, P. Y. Chiang and G. C. Temes, " A 11 μ W 250 Hz BW two-step incremental ADC with 100 dB DR and 91 dB SNDR for integrated sensor interfaces ", Proc. IEEE Custom Integr. Circuits Conf., pp. 1-4, Sep. 2014.
27.
H. Zhang et al., " A 6 μ W 95 dB SNDR inverter based ΣΔ modulator with subtractive dithering and SAR quantizer ", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 4, pp. 552-556, Apr. 2019.
28.
M. Z. Straayer and M. H. Perrott, "A 12-bit 10-MHz bandwidth continuous-time ΣΔ ADC with a 5-bit 950-MS/s VCO-based quantizer", IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 805-814, Apr. 2008.
29.
N. Maghari and U.-K. Moon, "A third-order DT ΔΣ modulator using noise-shaped bi-directional single-slope quantizer", IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2882-2891, Dec. 2011.
30.
J. Liu, S. Li, W. Guo, G. Wen and N. Sun, " A 0.029-mm 2 17-fJ/conversion-step third-order CT ΔΣ ADC with a single OTA and second-order noise-shaping SAR quantizer ", IEEE J. Solid-State Circuits, vol. 54, no. 2, pp. 428-440, Feb. 2019.
Contact IEEE to Subscribe

References

References is not available for this document.