We present a new design for an integrated-optics tunable dispersion compensator which can use low index-step waveguides, has low loss, is colorless, and requires only one...Show More
Metadata
Abstract:
We present a new design for an integrated-optics tunable dispersion compensator which can use low index-step waveguides, has low loss, is colorless, and requires only one electrical drive signal. We also demonstrate the first silica thermooptic continuous lens.
40 Gb/s and higher-rate data channels have bandwidths large enough that there is a strong need for a per-channel tunable dispersion compensator (TDC). Fiber, bulk-optic, and waveguide-based TDC's have been demonstrated.
Cites in Papers - |
Cites in Papers - IEEE (12)
Select All
1.
Pallavi G. Patki, Pengyu Guan, Lu Li, Taras I. Lakoba, Leif Katsuo Oxenløwe, Michael Vasilyev, Michael Galili, "Recent Progress on Optical Regeneration of Wavelength-Division-Multiplexed Data", IEEE Journal of Selected Topics in Quantum Electronics, vol.27, no.2, pp.1-12, 2021.
F. Kerbstadt, K. Petermann, "Analysis of adaptive dispersion compensators with double-AWG structures", Journal of Lightwave Technology, vol.23, no.3, pp.1468-1477, 2005.
C.R. Doerr, L.W. Stulz, S. Chandrasekhar, R. Pafchek, "Colorless tunable dispersion compensator with 400-ps/nm range integrated with a tunable noise filter", IEEE Photonics Technology Letters, vol.15, no.9, pp.1258-1260, 2003.
S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M.F. Yan, F.V. Dimarcello, W.A. Reed, P. Wisk, "Tunable dispersion compensators utilizing higher order mode fibers", IEEE Photonics Technology Letters, vol.15, no.5, pp.727-729, 2003.
T. Spott, A. Schumacher, J. Dieckroeger, D. Krabe, W. Schenk, H. Schneider, S. Ramminger, I. Baumann, "Macroscopic and microscopic thermal management of a planar integrated optical device", OFC 2003 Optical Fiber Communications Conference, 2003., pp.175-176 vol.1, 2003.
D. Moss, L. Lunardi, M. Lamont, G. Randall, P. Colbourne, S. Chandrasekhar, L. Buhl, "Tunable dispersion compensation at 10 Gb/s and 40 Gb/s using multicavity all-pass etalons", OFC 2003 Optical Fiber Communications Conference, 2003., pp.162-163 vol.1, 2003.
Y. Mochida, N. Yamaguchi, G. Ishikawa, "Technology-oriented review and vision of 40-Gb/s-based optical transport networks", Journal of Lightwave Technology, vol.20, no.12, pp.2272-2281, 2002.
L.M. Lunardi, D.J. Moss, S. Chandrasekhar, L.L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, C.A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation", Journal of Lightwave Technology, vol.20, no.12, pp.2136-2144, 2002.
C.K. Madsen, E.J. Laskowski, J. Bailey, M.A. Cappuzzo, S. Chandrasekhar, L.T. Gomez, A. Griffin, P. Oswald, L.W. Stulz, "Compact integrated tunable dispersion compensators", The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society, vol.2, pp.570-571 vol.2, 2002.
Siddharth Ramachandran, Man F. Yan, "Static and tunable dispersion management with higher order mode fibers", Fiber Based Dispersion Compensation, pp.187, 2007.
Siddharth Ramachandran, Man F. Yan, "Static and tunable dispersion management with higher order mode fibers", Journal of Optical and Fiber Communications Reports, vol.3, no.3, pp.159, 2006.