Loading [MathJax]/extensions/MathZoom.js
Exploring Spatiotemporal Consistency of Features for Video Translation in Consumer Internet of Things | IEEE Journals & Magazine | IEEE Xplore

Exploring Spatiotemporal Consistency of Features for Video Translation in Consumer Internet of Things


Abstract:

Video data has emerged as a primary source of information input in contemporary CIoT systems, significantly driving its development. However, due to the diversity of vide...Show More

Abstract:

Video data has emerged as a primary source of information input in contemporary CIoT systems, significantly driving its development. However, due to the diversity of video capture devices, videos exhibit significant heterogeneity in various aspects, such as color, texture, and lighting conditions, posing challenges for video manipulation and analysis. Moreover, different information processing terminals have limited requirements for data types, which has led to a demand for the translation of heterogeneous videos. In this paper, we propose a novel method named Structure and Motion Consistency Network (SMCN). It updates and optimizes the model from the feature level, making it more efficient at extracting invariant spatiotemporal information from different types of video data. Specifically, it fuses the structure information, a.k.a. mean and standard deviation of features at each spatial position across channels, then re-injects it to refine the spatial consistency, and maximizes motion mutual information of features from adjacent frames to improve the temporal consistency of intermediate features. We conducted experiments on the common video translation dataset Viper and the infrared-to-visible video translation dataset IRVI. Extensive experiments indicate our SMCN outperforms the state-of-the-art methods and the lightweight module can be easily applied to other models in a plug-and-play manner, showing significant advantages in addressing the problem of heterogeneous video data transformation.
Published in: IEEE Transactions on Consumer Electronics ( Volume: 70, Issue: 1, February 2024)
Page(s): 3077 - 3087
Date of Publication: 14 November 2023

ISSN Information:

References is not available for this document.

Select All
1.
M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda and Y. Kato, "Anomaly detection in smart home operation from user behaviors and home conditions", IEEE Trans. Consum. Electron., vol. 66, no. 2, pp. 183-192, May 2020.
2.
A. Al-Ali, I. A. Zualkernan, M. Rashid, R. Gupta and M. Alikarar, "A smart home energy management system using IoT and big data analytics approach", IEEE Trans. Consum. Electron., vol. 63, no. 4, pp. 426-434, Nov. 2017.
3.
T. Cultice, D. Ionel and H. Thapliyal, "Smart home sensor anomaly detection using convolutional autoencoder neural network", Proc. IEEE Int. Symp. Smart Electron. Syst. (iSES) (Formerly iNiS), pp. 67-70, 2020.
4.
T. Brindha and P. M. D. Raj Vincent, "BESM based approach to build energy efficient smart homes", Proc. Innovat. Power Adv. Comput. Technol. (i-PACT), pp. 1-6, 2017.
5.
M. Muneeb, H. Rustam and A. Jalal, "Automate appliances via gestures recognition for elderly living assistance", Proc. 4th Int. Conf. Adv. Comput. Sci. (ICACS), pp. 1-6, 2023.
6.
L. Kong and R. Dai, "Object-detection-based video compression for wireless surveillance systems", IEEE Multimedia, vol. 24, no. 2, pp. 76-85, Apr.-Jun. 2017.
7.
G. Yadav and A. L. Shrivastava, "Anomaly detection for video surveillance using deep learning techniques", Proc. Int. Conf. Intell. Innovat. Technol. Comput. Elect. Electron. (IITCEE), pp. 72-77, 2023.
8.
P. Pandiaraja, R. Saarumathi, M. Parashakthi and R. Logapriya, "An analysis of abnormal event detection and person identification from surveillance cameras using motion vectors with deep learning", Proc. 2nd Int. Conf. Electron. Renew. Syst. (ICEARS), pp. 1225-1232, 2023.
9.
A. F. Moiz, H. M. Khawaja, Z. H. Khan and R. Sohail, "QuadSWARM: A real-time autonomous surveillance system using multi-quadcopter UAVs", Proc. 1st Int. Conf. Adv. Innovat. Smart Cities (ICAISC), pp. 1-6, 2023.
10.
T. Okuyama, T. Gonsalves and J. Upadhay, "Autonomous driving system based on deep Q Learnig", Proc. Int. Conf. Intell. Auton. Syst. (ICoIAS), pp. 201-205, 2018.
11.
A. Chilkunda, S. Nakama, V. Chilkunda, D. Pedro, J. P. Matos-Carvalho and L. Campos, "UAV-based scenario builder and physical testing platform for autonomous vehicles", Proc. 6th Conf. Cloud Internet Things (CIoT), pp. 77-84, 2023.
12.
K. Yamamoto, R. Teng and K. Sato, "Simulation evaluation of vehicle movement model using Spatio-temporal grid reservation for automated valet parking", IEEE Open J. Intell. Transp. Syst., vol. 4, pp. 261-266, 2023.
13.
J. Wang et al., "Data fusion in infrastructure-augmented autonomous driving system: Why? where? and how?", IEEE Internet Things J., vol. 10, no. 18, pp. 15857-15871, Sep. 2023.
14.
E. Reinhard, M. Adhikhmin, B. Gooch and P. Shirley, "Color transfer between images", IEEE Comput. Graph. Appl., vol. 21, no. 5, pp. 34-41, Jul./Aug. 2001.
15.
R. Zhang, P. Isola and A. A. Efros, "Colorful image colorization", Proc. ECCV, pp. 649-666, 2016.
16.
I. Goodfellow et al., "Generative adversarial nets", Proc. NeurIPS, pp. 2672-2680, 2014.
17.
T. Park, A. A. Efros, R. Zhang and J.-Y. Zhu, "Contrastive learning for unpaired image-to-image translation", Proc. ECCV, pp. 319-345, 2020.
18.
J.-Y. Zhu, T. Park, P. Isola and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks", Proc. ICCV, pp. 2242-2251, 2017.
19.
X. Huang, M. Liu, S. J. Belongie and J. Kautz, "Multimodal unsupervised image-to-image translation", Proc. ECCV, pp. 179-196, 2018.
20.
A. Bansal, S. Ma, D. Ramanan and Y. Sheikh, "Recycle-GAN: Unsupervised video retargeting", Proc. ECCV, pp. 122-138, 2018.
21.
S. Li, B. Han, Z. Yu, C. H. Liu, K. Chen and S. Wang, "I2V-GAN: Unpaired infrared-to-visible video translation", Proc. ACM MM, pp. 3061-3069, 2021.
22.
Y. Chen, Y. Pan, T. Yao, X. Tian and T. Mei, "Mocycle-GAN: Unpaired video-to-video translation", Proc. ACM MM, pp. 647-655, 2019.
23.
Y. Bengio, A. Courville and P. Vincent, "Representation learning: A review and new perspectives", IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
24.
I. Sergey and S. Christian, "Batch normalization: Accelerating deep network training by reducing internal Covariate shift", Proc. ICML, pp. 448-456, 2015.
25.
J. L. Ba, J. R. Kiros and G. E. Hinton, "Layer normalization", arXiv:1607.06450, 2016.
26.
D. Ulyanov, A. Vedaldi and V. Lempitsky, "Instance normalization: The missing ingredient for fast stylization", arXiv:1607.08022, 2017.
27.
Y. Wu and K. He, "Group normalization", Proc. IJCV, pp. 1-17, 2018.
28.
B. Li, F. Wu, K. Q. Weinberger and S. Belongie, "Positional normalization", Proc. NeurIPS, pp. 1620-1632, 2019.
29.
B. Li, F. Wu, S.-N. Lim, S. J. Belongie and K. Q. Weinberger, "On feature normalization and data augmentation", Proc. CVPR, pp. 12383-12392, 2021.
30.
E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy and T. Brox, "FlowNet 2.0: Evolution of optical flow estimation with deep networks", Proc. CVPR, pp. 1647-1655, 2017.
Contact IEEE to Subscribe

References

References is not available for this document.