Loading [MathJax]/extensions/MathMenu.js
Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing | IEEE Journals & Magazine | IEEE Xplore

Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing


Abstract:

Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI ...Show More

Abstract:

Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across heterogeneously distributed edge nodes is worthy of discussion. The present focuses on software-defined infrastructure (SDI) and introduces a containerized EI framework for a mobile wearable Internet-of-Things (IoT) system. This framework, called the containerized edge intelligence framework (CEIF), is an inter-working architecture that allows the provisioning of containerized EI processing intelligent services related to mobile wearable IoT systems. CEIF enables dynamic instantiation of the inference services of AI models that have been pre-trained on clouds. It also accommodates edge computing devices (ECDs) running the container virtualization technique. Dynamic AI learning policies can also help with workload optimization, thereby reducing the response time of the requests of the EI inference. To stall the rapid increase in user workload when inferring the collected data for analysis, we then propose a deep q-learning algorithm in which the container cluster platform learns the varying user workload at the location of each ECD. The requests of the EI inference are scaled with the learned value and are processed successfully without overloading the ECD. When evaluated in a case study, the proposed algorithm enabled scaling of the processing requests of the EI inference in a containerized EI system while minimizing the number of instantiated container EI instances. The EI inference's requests are completed in an under-loaded container EI cluster system.
Published in: IEEE Transactions on Services Computing ( Volume: 16, Issue: 6, Nov.-Dec. 2023)
Page(s): 4328 - 4344
Date of Publication: 29 September 2023

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

The rapid increase of Internet of Things (IoT) devices has raised the demand for IoT-enabled artificial intelligence (AI) platforms. Located in the cloud, these AI platforms learn a new capability from the existing data (training) and apply this capability to new data via an application or service (inference). However, these AI platforms require high computing power to support deep learning (DL) applications, diverse computing resources, massive networking, and high response latency [1]. These challenges can be met by pooling the computing resources at the edge of the network, a concept known as edge computing (EC) [2]. Here, an edge refers to a location, far from the cloud, where an edge device runs edge applications. EC defines the operation of running workloads on these devices [2].

Select All
1.
A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, "Internet of Things: A survey on enabling technologies protocols and applications", IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2347-2376, 2015.
2.
J. Pan and J. McElhannon, "Future edge cloud and edge computing for Internet of Things applications", IEEE Internet Things J., vol. 5, no. 1, pp. 439-449, Feb. 2018.
3.
H. Jin, L. Jia and Z. Zhou, "Boosting edge intelligence with collaborative cross-edge analytics", IEEE Internet Things J., vol. 8, no. 4, pp. 2444-2458, Feb. 2021.
4.
P. Sha, S. Chen, L. Zheng, X. Liu, H. Tang and Y. Li, "Design and implement of microservice system for edge computing", IFAC-PapersOnLine, vol. 53, no. 5, pp. 507-511, 2020.
5.
P. Xu, S. Shi and X. Chu, "Performance evaluation of deep learning tools in docker containers", Proc. 3rd Int. Conf. Big Data Comput. Commun., pp. 395-403, 2017.
6.
P. A. Nayak, P. Sriganesh, K. Rakshitha, M. Manoj Kumar, P. B. S. and S. H. R., "Concept drift and model decay detection using machine learning algorithm", Proc. 12th Int. Conf. Comput. Commun. Netw. Technol., pp. 1-8, 2021.
7.
S. Horchidan, E. Kritharakis, V. Kalavri and P. Carbone, "Evaluating model serving strategies over streaming data", Proc. 6th Workshop Data Manage. End-To-End Mach. Learn., pp. 1-5, 2022.
8.
D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez and I. Stoica, "Clipper: A low-latency online prediction serving system", Proc. 14th USENIX Symp. Netw. Syst. Des. Implementation, pp. 613-627, 2017.
9.
"Triton inference server", 2021, [online] Available: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver.
10.
S. Zeb, M. A. Rathore, A. Mahmood, S. A. Hassan, J. Kim and M. Gidlund, "Edge intelligence in softwarized 6G: Deep learning-enabled network traffic predictions", 2021, [online] Available: https://arxiv.org/abs/2108.00332.
11.
H. Arabnejad, C. Pahl, P. Jamshidi and G. Estrada, "A comparison of reinforcement learning techniques for fuzzy cloud auto-scaling", Proc. IEEE/ACM 17th Int. Symp. Cluster Cloud Grid Comput., pp. 64-73, 2017.
12.
L. Baresi, S. Guinea, A. Leva and G. Quattrocchi, "A discrete-time feedback controller for containerized cloud applications", Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., pp. 217-228, 2016.
13.
P. Jamshidi, A. M. Sharifloo, C. Pahl, A. Metzger and G. Estrada, "Self-learning cloud controllers: Fuzzy Q-learning for knowledge evolution", Proc. Int. Conf. Cloud Auton. Comput., pp. 208-211, 2015.
14.
X. Xu, C. He, Z. Xu, L. Qi, S. Wan and M. Bhuiyan, "Joint optimization of offloading utility and privacy for edge computing enabled IoT", IEEE Internet Things J., vol. 7, no. 4, pp. 2622-2629, Apr. 2020.
15.
L. R. Rodrigues et al., "Network-aware container scheduling in multi-tenant data center", Proc. IEEE Glob. Commun. Conf., pp. 1-6, 2019.
16.
L. Giannelli et al., "A tutorial on optimal control and reinforcement learning methods for quantum technologies", Phys. Lett. A, vol. 434, 2022.
17.
M. Alrakhami et al., "A lightweight and cost effective edge intelligence architecture based on containerization technology", World Wide Web, vol. 23, pp. 1341-1360, Mar. 2020.
18.
M. Al-Rakhami, M. Alsahli, M. M. Hassan, A. Alamri, A. Guerrieri and G. Fortino, "Cost efficient edge intelligence framework using docker containers", Proc. IEEE 16th Int. Conf. Dependable Auton. Secure Comput. 16th Int. Conf. Pervasive Intell. Comput. 4th Int. Conf. Big Data Intell. Comput. Cyber Sci. Technol. Congr., pp. 800-807, 2018.
19.
G. Loseto et al., "Osmotic cloud-edge intelligence for IoT-based cyber-physical systems", Sensors, vol. 22, no. 6, pp. 1-19, 2022.
20.
L. Welagedara, J. Harischandra and N. Jayawardene, "Edge intelligence based collaborative learning system for IoT edge", Proc. IEEE 12th Annu. Inf. Technol. Electron. Mobile Commun. Conf., pp. 667-672, 2021.
21.
R. M. Hampau, M. Kaptein, T. Rost and I. Malavolta, "An empirical study on the performance and energy consumption of ai containerization strategies for computer-vision tasks on the edge", Proc. Int. Conf. Eval. Assessment Softw. Eng., pp. 50-59, 2022.
22.
S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou and X. Shen, "Delay-aware microservice coordination in mobile edge computing: A reinforcement learning approach", IEEE Trans. Mobile Comput., vol. 20, no. 3, pp. 939-951, Mar. 2021.
23.
Y. G. Kim and C.-J. Wu, "AutoScale: Energy efficiency optimization for stochastic edge inference using reinforcement learning", Proc. IEEE/ ACM 53rd Annu. Int. Symp. Microarchitecture, pp. 1082-1096, 2020.
24.
J. Wu, G. Zhang, J. Nie, Y. Peng, Y. Zhang and X. Wang, "Deep reinforcement learning for scheduling in an edge computing-based industrial Internet of Things", Wireless Commun. Mobile Comput., vol. 2021, pp. 1-12, 2021.
25.
Y. Xiao et al., "Reinforcement learning based energy-efficient collaborative inference for mobile edge computing", IEEE Trans. Commun., vol. 71, no. 2, pp. 864-876, Feb. 2023.
26.
K. Jiang, C. Sun, H. Zhou, X. Li, M. Dong and V. C. M. Leung, "Intelligence-empowered mobile edge computing: Framework issues implementation and outlook", IEEE Netw., vol. 35, no. 5, pp. 74-82, Sep./Oct. 2021.
27.
X. Xiong, K. Zheng, L. Lei and L. Hou, "Resource allocation based on deep reinforcement learning in IoT edge computing", IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1133-1146, Jun. 2020.
28.
S. Nagar, S. Samanta, P. Mohapatra and D. Kar, "Building golden signal based signatures for log anomaly detection", Proc. IEEE 15th Int. Conf. Cloud Comput., pp. 203-208, 2022.
29.
Q. Lei, W. Liao, Y. Jiang, M. Yang and H. Li, "Performance and scalability testing strategy based on kubemark", Proc. IEEE 4th Int. Conf. Cloud Comput. Big Data Anal., pp. 511-516, 2019.
30.
L. Liu, L. Xiao and X. Li, "Simulation of migration of hexavalent chromium in groundwater", J. Syst. Simul., vol. 30, no. 2, pp. 560-568, 2018.
Contact IEEE to Subscribe

References

References is not available for this document.