Loading [a11y]/accessibility-menu.js
Characterization and Modeling of Sparkless Discharge to a Touch Screen Display | IEEE Conference Publication | IEEE Xplore

Characterization and Modeling of Sparkless Discharge to a Touch Screen Display


Abstract:

Although corona discharge to a touchscreen display is not associated with the spark, it could cause soft and hard failures due to electromagnetic coupling to sensitive el...Show More

Abstract:

Although corona discharge to a touchscreen display is not associated with the spark, it could cause soft and hard failures due to electromagnetic coupling to sensitive electronics beneath the glass. Experimental data were obtained to characterize these sparkless discharges and an equivalent circuit model was constructed to predict the resulting coupling to touchscreen electronics. Measurements and simulation indicate that a thinner glass and a higher touchscreen indium-tin-oxide (ITO) sense trace impedance both lead to higher ESD risk by delivering higher energy into the sensing IC. A CST co-simulation model is proposed and is shown to model the displacement current accurately. Charge movement and dissipation on the glass surface is represented using a disk with conductivity proportional to the reciprocal of radial distance. Dust figure measurements were used to study the effects of the glass type, glass thickness and voltage level on the corona discharge and the current coupled to the touchscreen patch on the display. These results can be used to drive full wave co-simulation models which try to anticipate the impact of sparkless discharges on the touchscreen electronics.
Date of Conference: 29 July 2023 - 04 August 2023
Date Added to IEEE Xplore: 12 September 2023
ISBN Information:
Conference Location: Grand Rapids, MI, USA

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.