Introduction
The next-generation wireless communication system is expected to leap the current generation in terms of peak data rate, spectral efficiency, and connection density [1]. Towards achieving this target, several techniques in multiplexing and multiple access have gained increasing research interest. Non-orthogonal multiple access (NOMA) [2] has been shown to offer a range of advantages over conventional orthogonal multiple access (OMA) schemes. For example, in a typical two-user power-domain NOMA downlink, a base station (BS) relies on superposition coding by allocating high power to a far user and low power to a near user. The multiplexed signals for the two users are transmitted by the BS in the same time and frequency resources. The far user demodulates its signal by exploiting the higher power allocation in the presence of the inter-user interference (IUI), while the near user performs successive interference cancellation (SIC) to remove the signal associated with the far user.
The benefits of NOMA can be categorized as (a) the high spectral efficiency owing to the flexible use of entire time and frequency resources, (b) the high number of simultaneous connections, and (c) the reduced latency by the relaxed requirement for scheduling. However, a NOMA system typically suffers from the problem of fairness between the near and far users. While higher power allocated to the far user improves the performance, it, in turn, reduces the relative power allocated to the near user. In order to alleviate this fairness problem, cooperative NOMA (C-NOMA) was introduced in [3]. The central idea of C-NOMA is exploiting the ability of the near user to decode the data of the far user during SIC, which is unused in the conventional NOMA system. The redundant copy of the far user’s signal is used to improve the achievable rate of the far user owing to the diversity gain without imposing multiple antennas. In [3], the near user acts as a half-duplex relay, while in [4], the near user is a full-duplex relay.
Analogous to the non-orthogonality introduced in the multiple-access domain, i.e., NOMA, a faster-than-Nyquist (FTN) signaling [5], [6], [7] technique constitutes non-orthogonal time-division multiplexing. More specifically, FTN signaling relaxes Nyquist’s orthogonality criterion in the time domain by reducing the time separation between adjacent data-bearing pulses below the threshold necessary for zero intersymbol interference (ISI). For a bandlimited channel, FTN signaling can recover the capacity loss [8] imposed in conventional Nyquist-rate signaling when practical filters (e.g., the root-raised cosine (RRC) filter) are employed. The capacity advantage is gleaned from the excess bandwidth of an RRC filter (captured by its roll-off factor
Against the above background, in this letter, we propose a novel FTN-signaling-based power-domain C-NOMA downlink to improve fairness to the far user. Eigendecomposition precoding is employed to pre-equalize FTN-induced-ISI and enable diagonalization at the receiver. Motivated by the idea of cooperative diversity [24], half-duplexed relaying based on the decode-and-forward (DF) strategy is performed by the near user at an FTN rate to improve the capacity of far user. We derive the ergodic rate and show the advantage of the proposed system over benchmark techniques in terms of capacity and outage.
Notations: Boldface uppercase letters are used to denote matrices, boldface lowercase letters for vectors, and lowercase letters with a suffix to denote elements of a vector.
System Model of Proposed Scheme
The system model of C-NOMA considered in this letter is shown in Fig. 1. A BS and two users,
(a) System model of two-user C-NOMA downlink with power-domain multiplexing, (b) time-division transmission in direct and relay phases.
Each channel coefficient is modeled as
A. FTN-Signaling-Based C-NOMA Downlink
Information bits destined for \begin{align*} \boldsymbol {c}=&[c_{0}, c_{1},\ldots, c_{N-1}]^{T}\in \mathbb {C}^{N} \tag{1}\\=&\sum _{j}\sqrt {\theta _{j} P_{s}}\boldsymbol {s}_{j}, \tag{2}\end{align*}
1) Precoding for FTN Signaling:
The symbols in (2) are precoded as follows:\begin{align*} \boldsymbol {x}=&[x_{0}, x_{1},\ldots, x_{N-1}]^{T} \tag{3}\\=&\boldsymbol{\Xi } \boldsymbol {c},\tag{4}\end{align*}
2) Transmit Filtering and FTN Signaling:
The precoded multiplexed symbols of (4) are filtered with a \begin{equation*} x(t)=\sum _{n=0}^{N-1}x_{n} p(t-n\tau T_{0}),\tag{5}\end{equation*}
3) Direct Transmission With IUI:
In the direct transmission phase, both \begin{equation*} y_{j}(t) = h_{j} \sum _{n=0}^{N-1} x_{n} p(t-nT) + n_{j}(t), \tag{6}\end{equation*}
\begin{equation*} y^{\mathrm {MF}}_{j}(t) = h_{j} \sum _{n=0}^{N-1} x_{n} g(t-nT) + \omega _{j}(t),\tag{7}\end{equation*}
\begin{equation*} \boldsymbol {y}^{\mathrm {MF}}_{j}=h_{j}{\mathbf {G}}\boldsymbol {x}+\boldsymbol {\omega }_{j} \in \mathbb {C}^{N},\tag{8}\end{equation*}
Furthermore, exploiting the Toeplitz matrix properties of G [23], we arrive at the eigenvalue decomposition of \begin{equation*} {\mathbf {G}}={\mathbf {V\Lambda V}}^{T}, \tag{9}\end{equation*}
\begin{align*} \boldsymbol {y}^{\mathrm {noISI}}_{j}=&{\boldsymbol{\Lambda }}^{-\frac {1}{2}}{\mathbf {V}}^{T}\boldsymbol {y}^{\mathrm {MF}}_{j} \tag{10}\\=&h_{j}{\boldsymbol{\Lambda }}^{-\frac {1}{2}}{\mathbf {V}}^{T}{\mathbf {G}}\boldsymbol {x} + {\boldsymbol{\Lambda }}^{-\frac {1}{2}}{\mathbf {V}}^{T}\boldsymbol {\omega }_{j}. \tag{11}\end{align*}
\begin{equation*} \boldsymbol {y}^{\mathrm {noISI}}_{j} =h_{j}{\boldsymbol{\Lambda }}^{\frac {1}{2}}{\boldsymbol{\Psi }}\sum _{j}\sqrt {\theta _{j} P_{s}}\boldsymbol {s}_{j} + {\boldsymbol{\Lambda }}^{-\frac {1}{2}}{\mathbf {V}}^{T}\boldsymbol {\omega }_{j}.\tag{12}\end{equation*}
\begin{equation*} \hat {s}_{n}^{(1,j)}=\mathop {\mathrm{ arg\,min}}\limits _{s_{\gamma }\in \Gamma }\Big \lVert y^{\mathrm {noISI,eq}}_{j,n}-s_{\gamma }\Big \rVert ^{2}, \tag{13}\end{equation*}
\begin{equation*} \hat {s}_{n}^{(2,2)}=\mathop {\mathrm{ arg\,min}}\limits _{s_{\gamma }\in \Gamma }\bigg \lVert \left ({y^{\mathrm {noISI,eq}}_{2,n}-\sqrt {\theta _{1} P_{s}}\hat {s}_{n}^{(1,2)} }\right)-s_{\gamma }\bigg \rVert ^{2}. \tag{14}\end{equation*}
4) Relay Transmission Without IUI:
In the cooperative relaying phase, \begin{equation*} y_{1}^{\mathrm {coop}}(t) = h_{3} \sum _{n=0}^{N-1} \hat {s}_{n}^{(1,2)} p(t-nT) + n_{1}^{\mathrm {coop}}(t). \tag{15}\end{equation*}
\begin{equation*} \hat {s}_{n}^{(1,1),\mathrm {coop}}=\mathop {\mathrm{ arg\,min}}\limits _{s_{\gamma }\in \Gamma }\Big \lVert y^{\mathrm {noISI,coop}}_{1,n}-s_{\gamma }\Big \rVert ^{2}. \tag{16}\end{equation*}
\begin{align*} \hat {s}_{n}^{(1,1),\mathrm {sc}}= \begin{cases} \hat {s}_{n}^{(1,1),\mathrm {dir}}, & \mathrm {if} \rho _{1}^{\mathrm {dir}}>\rho _{1}^{\mathrm {coop}} \\ \hat {s}_{n}^{(1,1),\mathrm {coop}}, & \mathrm {otherwise}. \end{cases} \tag{17}\end{align*}
Performance Analysis
In this section, we characterize the achievable ergodic information rate and outage performance of the proposed scheme.
A. Ergodic Information Rate
The received SINR at the far user \begin{equation*} \rho _{1}^{\mathrm {dir}}= \frac {|h_{1}|^{2}\theta _{1} P_{s}}{|h_{1}|^{2}\theta _{2} P_{s} + N_{0}}. \tag{18}\end{equation*}
\begin{equation*} \rho _{2,1}^{\mathrm {dir}}= \frac {|h_{2}|^{2}\theta _{1} P_{s}}{|h_{2}|^{2}\theta _{2} P_{s} + N_{0}},\quad \rho _{2,2}^{\mathrm {dir}}= \frac {|h_{2}|^{2}\theta _{2} P_{s}}{N_{0}}. \tag{19}\end{equation*}
\begin{equation*} \rho _{1}^{\mathrm {coop}}= \frac {|h_{3}|^{2} P_{s}}{N_{0}}. \tag{20}\end{equation*}
\begin{equation*} R^{\mathrm {FTN}} = \lim _{N\rightarrow \infty }\frac {1}{N\tau T_{0}}I(\boldsymbol {y};\boldsymbol {s}) \tag{21}\end{equation*}
\begin{align*} R^{\mathrm {FTN}}=&\lim _{N\rightarrow \infty }\frac {1}{N\tau T_{0}}h_{e}(\boldsymbol {y})-h_{e}\left ({\boldsymbol {y}|\boldsymbol {s}}\right) \tag{22}\\=&\lim _{N\rightarrow \infty }\frac {1}{N\tau T_{0}}h_{e}\left ({\boldsymbol {y})-h_{e}(\boldsymbol {\eta }}\right). \tag{23}\end{align*}
Using the relations \begin{align*} R^{\mathrm {FTN}}=&\lim _{N\rightarrow \infty }\frac {1}{N\tau T_{0}}\sum _{i=1}^{N}\log _{2} \mathrm {det}\left ({\mathbf {I}+\frac {\boldsymbol{\Sigma }_{s}\mathbf {G}}{N_{0}}}\right) \tag{24}\\=&\lim _{N\rightarrow \infty }\frac {1}{N\tau T_{0}}\sum _{i=1}^{N}\log _{2}\left ({1+\frac {\lambda _{i} \psi _{i}^{2} P_{s}}{N_{0}}}\right) \tag{25}\end{align*}
Denoting the two-sided bandwidth of shaping pulse \begin{align*} R_{1}^{\mathrm {dir}}=&\frac {1}{2}\frac {2W}{\tau }\log _{2}\left({1 {+}\frac {|h_{1}|^{2}\theta _{1} P_{s}}{|h_{1}|^{2}\theta _{2} P_{s} {+} N_{0}}}\right) {[\mathrm {bits/s}]} \quad \tag{26}\\ R_{2,2}^{\mathrm {dir}}=&\frac {1}{2}\frac {2W}{\tau }\log _{2}\left({1 {+}\frac {|h_{2}|^{2}\theta _{2} P_{s}}{N_{0}}}\right) {[\mathrm {bits/s}]}. \tag{27}\end{align*}
\begin{align*} R_{1}^{\mathrm {dir}}=&W(1 {+}\beta)\log _{2}\left({1 {+}\frac {|h_{1}|^{2}\theta _{1} P_{s}}{|h_{1}|^{2}\theta _{2} P_{s} {+} N_{0}}}\right) {[\mathrm {bits/s}]} \quad \tag{28}\\ R_{2,2}^{\mathrm {dir}}=&W(1 {+}\beta)\log _{2}\left({1 {+}\frac {|h_{2}|^{2}\theta _{2} P_{s}}{N_{0}}}\right) {[\mathrm {bits/s}]}. \tag{29}\end{align*}
\begin{equation*} R_{1}^{\mathrm {coop}} = W(1+\beta)\log _{2}\left({1+\frac {|h_{3}|^{2} P_{s}}{N_{0}}}\right) {[\mathrm {bits/s}]}. \tag{30}\end{equation*}
\begin{align*}&R_{1}^{\mathrm {dir {+}coop}} {=} W(1 {+}\beta) \\&\;\quad {}\times \log _{2}\left[{1{+}\max \left({\frac {|h_{1}|^{2}\theta _{1} P_{s}}{|h_{1}|^{2}\theta _{2} P_{s}{+}N_{0}}, \frac {|h_{3}|^{2} P_{s}}{N_{0}}}\right)}\right] {[\mathrm {bits/s}]}. \tag{31}\end{align*}
B. Outage Probability
Letting the target rate at \begin{equation*} P^{\mathrm {out}}_{u_{1}}=\mathbb {P}\big [R_{1}^{\mathrm {dir+coop}} < R_{\mathrm {thres}}\big].\tag{32}\end{equation*}
\begin{equation*} P^{\mathrm {out}}_{u_{1}}=\mathbb {P}\left[{\max \big (\rho _{1}^{\mathrm {dir}},\rho _{1}^{\mathrm {coop}}\big) < 2^{\frac {R_{\mathrm {thres}}}{W(1+\beta)}}-1}\right]. \tag{33}\end{equation*}
\begin{align*} P^{\mathrm {out}}_{u_{1}}=&\mathbb {P}\left[{\rho _{1}^{\mathrm {dir}},\rho _{1}^{\mathrm {coop}} < 2^{\frac {R_{\mathrm {thres}}}{W(1+\beta)}}{-}1}\right] \tag{34}\\=&\mathbb {P}\left[{\rho _{1}^{\mathrm {dir}}{ < }2^{\frac {R_{\mathrm {thres}}}{W(1+\beta)}}{-}1}\right]\mathbb {P}\left[{\rho _{1}^{\mathrm {coop}}{ < }2^{\frac {R_{\mathrm {thres}}}{W(1+\beta)}}{-}1}\right].\tag{35}\end{align*}
\begin{equation*} f_{\mathbb {E}[{\rho }_{1}^{\mathrm {dir}}]}(\rho _{1}^{\mathrm {dir}})=\frac {1}{\mathbb {E}[{\rho }_{1}^{\mathrm {dir}}]}\exp \left({{-}\frac {\rho _{1}^{\mathrm {dir}}}{\mathbb {E}[{\rho }_{1}^{\mathrm {dir}}]}}\right). \tag{36}\end{equation*}
\begin{align*}&\mathbb {P}\left[{\rho _{1}^{\mathrm {dir}} < 2^{\frac {R_{\mathrm {thres}}}{W(1{+}\beta)}}{-}1}\right]=\int _{0}^{2^{\frac {R_{\mathrm {thres}}}{W(1{+}\beta)}}{-}1}f_{\mathbb {E}[{\rho }_{1}^{\mathrm {dir}}]}(\rho _{1}^{\mathrm {dir}})d{\rho _{1}^{\mathrm {dir}}} \\&\;= 1-\exp \left({{-}\frac {2^{\frac {R_{\mathrm {thres}}}{W(1+\beta)}}{-}1}{\mathbb {E}[{\rho }_{1}^{\mathrm {dir}}]}}\right). \tag{37}\end{align*}
\begin{equation*} \mathbb {P}\left[{\rho _{1}^{\mathrm {coop}} < 2^{\frac {R_{\mathrm {thres}}}{W(1+\beta)}}{-}1}\right]=1-\exp \left({{-}\frac {2^{\frac {R_{\mathrm {thres}}}{W(1+\beta)}}{-}1}{\mathbb {E}[{\rho }_{1}^{\mathrm {coop}}]}}\right). \tag{38}\end{equation*}
\begin{equation*} P^{\mathrm {out}}_{u_{1}}{=}\left[{1-\exp \left({\frac {1{-}2^{\frac {R_{\mathrm {thres}}}{W(1{+}\beta)}}}{\mathbb {E}[{\rho }_{1}^{\mathrm {dir}}]}}\right)}\right]\left[{1-\exp \left({\frac {1{-}2^{\frac {R_{\mathrm {thres}}}{W(1{+}\beta)}}}{\mathbb {E}[{\rho }_{1}^{\mathrm {coop}}]}}\right)}\right]. \tag{39}\end{equation*}
Under the assumption of the independent direct and relaying channels, our scheme achieves the diversity order of two.
C. Performance Results
Here, we present the performance results of the capacity and outage probability of the proposed FTN-based C-NOMA scheme. The BS,
Fig. 2 shows the ergodic information rate of
Achievable information rates of the far user
Finally, Fig. 3 shows the outage probability of the far user
Outage probabilities of the far user
Conclusion
In this letter, we proposed the system integrating FTN signaling and C-NOMA with half-duplex DF relaying. While FTN signaling gleans increased spectral efficiency from the combination of a non-ideal shaping filter and reduced symbol interval, C-NOMA extends the concept of cooperative diversity with the aid of the redundant signal for a weak user, which is decoded by the strong user during SIC. Thus, by employing the higher symbol rate achieved by FTN signaling in the context of C-NOMA downlink, we demonstrated the explicit advantage in terms of capacity and outage probability achieved by the proposed scheme over its orthogonal counterparts as well as the conventional NOMA techniques.