Loading [MathJax]/extensions/MathMenu.js
Yongkang Song - IEEE Xplore Author Profile

Showing 1-2 of 2 results

Filter Results

Show

Results

Evaluating and training autonomous driving systems require diverse and scalable corner cases. However, most existing scene generation methods lack controllability, accuracy, and versatility, resulting in unsatisfactory generation results. Inspired by DragGAN in image generation, we propose DragTraffic, a generalized, interactive, and controllable traffic scene generation framework based on conditi...Show More
Accurate trajectory prediction is crucial for safe and efficient autonomous driving, but handling partial observations presents significant challenges. To address this, we propose a novel trajectory prediction framework called Partial Observations Prediction (POP) for congested urban road scenarios. The framework consists of two key stages: self-supervised learning (SSL) and feature distillation. ...Show More