Yeonggul Jang - IEEE Xplore Author Profile

Showing 1-8 of 8 results

Filter Results

Show

Results

Doppler echocardiography offers critical insights into cardiac function and phases by quantifying blood flow velocities and evaluating myocardial motion. However, previous methods for automating Doppler analysis, ranging from initial signal processing techniques to advanced deep learning approaches, have been constrained by their reliance on electrocardiogram (ECG) data and their inability to proc...Show More
Heart auscultation is a simple and inexpensive first-line diagnostic test for the early screening of heart abnormalities. A phonocardiogram (PCG) is a digital recording of an analog heart sound acquired using an electronic stethoscope. A computerized algorithm for PCG analysis can aid in detecting abnormal signal patterns and support the clinical use of auscultation. It is important to detect fund...Show More
Prediction of abdominal aortic aneurysm (AAA) growth is of essential importance for the early treatment and surgical intervention of AAA. Capturing key features of vascular growth, such as blood flow and intraluminal thrombus (ILT) accumulation play a crucial role in uncovering the intricated mechanism of vascular adaptation, which can ultimately enhance AAA growth prediction capabilities. However...Show More
Automatic detection and classification of thoracic diseases using deep learning algorithms have many applications supporting radiologists’ diagnosis and prognosis. However, in the medical field, the class-imbalanced problem is extremely common due to the differences in prevalence among diseases, making it difficult to develop these applications. Many GAN-based methods have been proposed to solve t...Show More
Automatic quantification of the left ventricle (LV) from cardiac magnetic resonance (CMR) images plays an important role in making the diagnosis procedure efficient, reliable, and alleviating the laborious reading work for physicians. Considerable efforts have been devoted to LV quantification using different strategies that include segmentation-based (SG) methods and the recent direct regression ...Show More
Motion artifacts may occur in coronary computed tomography angiography (CCTA) due to the heartbeat and impede the clinician’s diagnosis of coronary arterial diseases. Thus, motion artifact correction of the coronary artery is required to quantify the risk of disease more accurately. We present a novel method based on deep learning for motion artifact correction in CCTA. Because the image of the co...Show More
Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the “Automatic Cardiac Diagnosis Challenge” dataset (ACDC), the large...Show More
A significant amount of research has been done on the segmentation of coronary arteries. However, the resulting automated boundary delineation is still not suitable for clinical utilization. The convolutional neural network was driving advances in the medical image processing. We propose the brief convolutional network (BCN) that automatically produces the labeled mask with the luminal and wall bo...Show More