Loading [MathJax]/extensions/MathZoom.js
Andreas Lugmayr - IEEE Xplore Author Profile

Showing 1-10 of 10 results

Results

Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask. Most existing approaches train for a certain distribution of masks, which limits their generalization capabilities to unseen mask types. Furthermore, training with pixel-wise and perceptual losses often leads to simple textural extensions towards the missing areas instead of sem...Show More
This paper reviews the NTIRE 2022 challenge on learning the super-Resolution space. This challenge aims to raise awareness that the super-resolution problem is ill-posed. Since many high-resolution images map to the same low-resolution image, we asked the participants to create methods that sample diverse super-resolution from the space of possible high-resolution images given a low-resolution ima...Show More
Super-resolution is an ill-posed problem, where a ground-truth high-resolution image represents only one possibility in the space of plausible solutions. Yet, the dominant paradigm is to employ pixel-wise losses, such as L1, which drive the prediction towards a blurry average. This leads to fundamentally conflicting objectives when combined with adversarial losses, which degrades the final quality...Show More
Normalizing flows have recently demonstrated promising results for low-level vision tasks. For image super-resolution (SR), it learns to predict diverse photo-realistic high-resolution (HR) images from the low-resolution (LR) image rather than learning a deterministic mapping. For image rescaling, it achieves high accuracy by jointly modelling the downscaling and upscaling processes. While existin...Show More
The difficulty of obtaining paired data remains a major bottleneck for learning image restoration and enhancement models for real-world applications. Current strategies aim to synthesize realistic training data by modeling noise and degradations that appear in real-world settings. We propose DeFlow, a method for learning stochastic image degradations from unpaired data. Our approach is based on a ...Show More
This paper reviews the NTIRE 2021 challenge on learning the super-Resolution space. It focuses on the participating methods and final results. The challenge addresses the problem of learning a model capable of predicting the space of plausible super-resolution (SR) images, from a single low-resolution image. The model must thus be capable of sampling diverse outputs, rather than just generating a ...Show More
This paper reviews the NTIRE 2020 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resolution images are unavailable. For training, only one set of source input images is therefore provided along with a set of unpaired high-quality target images. In Track 1: Image Proc...Show More
Super-resolution methods in literature has in recent years been dominated by convolutional neural networks (CNNs), aiming to learn a direct mapping from a low to high resolution image. Although successful, these methods rely on large-scale and high-quality datasets, to learn more powerful models. The scale of the existing super-resolution datasets are limiting the performance of current deep and h...Show More
Most current super-resolution methods rely on low and high resolution image pairs to train a network in a fully supervised manner. However, such image pairs are not available in real-world applications. Instead of directly addressing this problem, most works employ the popular bicubic downsampling strategy to artificially generate a corresponding low resolution image. Unfortunately, this strategy ...Show More