IEEE Journal of Solid-State Circuits | All Volumes | IEEE Xplore

Issue 1 • Jan.-2005

[Front cover]

Publication Year: 2005,Page(s):c1 - c4

[Front cover]

Year: 2005 | Volume: 40 | Issue: 1

IEEE Journal of Solid-State Circuits publication information

Publication Year: 2005,Page(s):c2 - c2

IEEE Journal of Solid-State Circuits publication information

Year: 2005 | Volume: 40 | Issue: 1

Table of contents

Publication Year: 2005,Page(s):1 - 2
Cited by: Papers (1)

Table of contents

Year: 2005 | Volume: 40 | Issue: 1
A dual-core 64-bit microprocessor optimized for compute-dense systems such as rack-mount and blade servers for network computing was developed. The chip consists of two UltraSPARC II cores, each with its own 512 kB L2 cache, a DDR-1 memory controller, and symmetric multiprocessor bus (JBus) controllers. The 206-mm/sup 2/ die is fabricated in 0.13-/spl mu/m CMOS technology with seven layers of Cu a...Show More
The first two members in a family of 64-bit superscalar microprocessors are presented. The 130-nm processor, which was introduced first, offers 5-way instruction dispatch, support for 4-way integer and floating-point single-instruction multiple-data (SIMD) operations, a 512-kB second level (L2) cache, and a high-speed external bus. The 90-nm processor is a technology remap of the 130-nm design. It...Show More
High-performance and low-power microprocessors are key to PDA applications. A dynamic voltage and frequency management (DVFM) scheme with leakage power compensation effect is introduced in a microprocessor with 128-bit wideband 64-Mb embedded DRAM. The DVFM scheme autonomously controls clock frequency from 8 to 123 MHz in steps of 0.5 MHz and also adaptively controls supply voltage from 0.9 to 1.6...Show More
The Pentium/spl reg/ 4 processor architecture uses a 2/spl times/ frequency core clock to implement low latency integer operations. Low-voltage-swing (LVS) logic circuits implemented in 90-nm technology meet the frequency demands of a third-generation integer-core design.Show More
This paper describes a single-cycle 64-bit integer execution ALU fabricated in 90-nm dual-Vt CMOS technology, operating at 4 GHz in the 64-bit mode with a 32-bit mode frequency of 7 GHz (measured at 1.3 V, 25/spl deg/ C). The lower- and upper-order 32-bit domains operate on separate off-chip supply voltages, enabling conditional turn-on/off of the 64-bit ALU mode operation and efficient power-perf...Show More
A 4-MB L2 data cache was implemented for a 64-bit 1.6-GHz SPARC(r) RISC microprocessor. Static sense amplifiers were used in the SRAM arrays and for global data repeaters, resulting in robust and flexible timing operation. Elimination of the global clock grid over the SRAM array saves power, enabled by combining the clock information with array select signals. Redundancy was implemented flexibly, ...Show More
There remains a need to improve sub-1-V CMOS VLSIs with respect to variation in transistor behavior. In this paper, to minimize variation in delay and the noise margin of the circuits in processors, we propose several mixed body bias techniques using body bias generation circuits. In these circuits, either the saturation region of the current between source and drain (I/sub ds/) or the threshold v...Show More
A decoupling circuit using an operational amplifier is proposed to suppress substrate crosstalk in mixed-signal system-on-chip (SoC) devices. It overcomes the parasitic inductance problem of on-chip capacitor decoupling. The effect of the proposed decoupling circuit is not limited by parasitic fine impedance. A 0.13-/spl mu/m CMOS test chip showed that substrate noise at frequencies from 40 MHz to...Show More
A source-synchronous I/O link with adaptive receiver-side equalization has been implemented in 0.13-/spl mu/m bulk CMOS technology. The transceiver is optimized for small area (360 /spl mu/m /spl times/ 360 /spl mu/m) and low power (280 mW). The analog equalizer is implemented as an 8-way interleaved, 4-tap discrete-time linear filter. The equalization improved the data rate of a 102 cm backplane ...Show More
This paper presents a simultaneous bi-directional (SBD) 4-level I/O interface for high-speed DRAMs. The data rate of 4 Gb/s/pin was demonstrated using a 500-MHz clock generator and a full CMOS rail-to-rail power swing. The power consumed by the I/O circuit was measured to be 28 mW/pin, when connected to a 10-pF load, at a 1.8-V supply voltage. The transmitter uses a 4-level push-pull linear output...Show More
This work presents a new approach to global clock distribution in which tree-driven grids are augmented with on-chip spiral inductors to resonate the clock capacitance. In this scheme, the energy of the fundamental frequency resonates between electric and magnetic forms, with the reduced admittance of the clock network allowing for significantly lower gain requirements in the buffering network. Th...Show More
This paper presents a multigigahertz active clock deskewing architecture that uses analog phase interpolation to replace the area-consuming capacitively controlled delay lines used in regional clock deskewing delay-locked loops. It provides a small phase step that is uniform and process-independent over the entire 2ϖ phase deskew range, which reduces the intra-die clock skew. The phase interpolato...Show More
Modern and future ultra-deep-submicron (UDSM) technologies introduce several new problems in analog design. Nonlinear output conductance in combination with reduced voltage gain pose limits in linearity of (feedback) circuits. Gate-leakage mismatch exceeds conventional matching tolerances. Increasing area does not improve matching any more, except if higher power consumption is accepted or if acti...Show More
This paper describes the design and modeling of CMOS transistors, integrated passives, and circuit blocks at millimeter-wave (mm-wave) frequencies. The effects of parasitics on the high-frequency performance of 130-nm CMOS transistors are investigated, and a peak f/sub max/ of 135 GHz has been achieved with optimal device layout. The inductive quality factor (Q/sub L/) is proposed as a more repres...Show More
A low-noise amplifier, direct-conversion quadrature mixer, power amplifier, and voltage-controlled oscillators have been implemented in a 0.12-/spl mu/m, 200-GHz f/sub T/290-GHz f/sub MAX/ SiGe bipolar technology for operation at 60 GHz. At 61.5 GHz, the two-stage LNA achieves 4.5-dB NF, 15-dB gain, consuming 6 mA from 1.8 V. This is the first known demonstration of a silicon LNA at V-band. The do...Show More
A reconfigurable LSI employing a nonvolatile nanometer-scale switch, NanoBridge, is proposed, and its basic operations are demonstrated. The switch, composed of solid electrolyte copper sulfide, has a <30-nm contact diameter and <100-/spl Omega/ on-resistance. Because of its small size, it can be used to create extremely dense field-programmable logic arrays. A 4 /spl times/ 4 crossbar switch and ...Show More
The concept of cut-and-paste customization is introduced for the first time in designing integrated circuits based on mechanically flexible organic field-effect transistors, and is applied to electronic artificial skin. The electronic artificial skin comprise of three separate integrated circuits that are a pressure-sensor array, row decoders, and column selectors to read out pressure information ...Show More
An on-chip 1-Mb SRAM suitable for embedding in the application processor used in mobile cellular phones was developed. This SRAM supports three operating modes - high-speed active mode, low-leakage low-speed active mode, and standby mode - and uses a subdivisional power-line control (SPC) scheme. The combination of three operating modes and the SPC scheme realizes low-power operation under actual ...Show More
The 18-way set-associative, single-ported 9 MB cache for the Itanium 2 processor uses 210 identical 48-kB sub-arrays with a 2.21-/spl mu/m/sup 2/ cell in a 130-nm 6-metal technology. The processor runs at 1.7 GHz at 1.35 V and dissipates 130 W. The 432-mm/sup 2/ die contains 592 M transistors, the largest transistor count reported for a microprocessor. This paper reviews circuit design and impleme...Show More
An embedded DRAM macro with a self-adjustable timing control (STC) scheme, a negative edge transmission scheme (NET), and a power-down data retention (PDDR) mode is developed. A 13.98-mm/sup 2/ 16-Mb embedded DRAM macro is fabricated in 0.13 /spl mu/m logic-based embedded DRAM process. Co-salicide word lines and MIM capacitors are used for high-speed array operation. The delay timing variation of ...Show More
This work describes a 500-MHz compiled eDRAM macro offered in a 90-nm logic-based process. The macro architecture is optimized for high bandwidth while enabling compilation in bank and data-word dimensions. A direct write scheme simultaneously improves random bank cycle time and row access time without signal loss. The benefits of ground sensing, reference cells, and bitline twisting was reviewed....Show More

Contact Information

Editor-in-Chief
Dennis Sylvester
University of Michigan
Ann Arbor
USA
jssc.eic.sylvester@gmail.com

Contact Information

Editor-in-Chief
Dennis Sylvester
University of Michigan
Ann Arbor
USA
jssc.eic.sylvester@gmail.com