Utilizing digital beamforming (DBF) techniques in conjunction with the feed array of large deployable reflector antennas can boost the performance of synthetic aperture radar (SAR) systems. Multichannel SAR overcomes the constraints of classical single-channel SAR, allowing for wide-swath imaging at fine azimuth resolution. Part 1 of this tutorial provided an introduction to the instrument structure of a DBF imaging radar and the particularities/variants of its basic operation mode, known as a single-beam scan-on-receive (SCORE) system.
Abstract:
Utilizing digital beamforming (DBF) techniques in conjunction with the feed array of large deployable reflector antennas can boost the performance of synthetic aperture r...Show MoreMetadata
Abstract:
Utilizing digital beamforming (DBF) techniques in conjunction with the feed array of large deployable reflector antennas can boost the performance of synthetic aperture radar (SAR) systems. Multichannel SAR overcomes the constraints of classical single-channel SAR, allowing for wide-swath imaging at fine azimuth resolution. Part 1 of this tutorial provided an introduction to the instrument structure of a DBF imaging radar and the particularities/variants of its basic operation mode, known as a single-beam scan-on-receive (SCORE) system.
Published in: IEEE Geoscience and Remote Sensing Magazine ( Volume: 10, Issue: 4, December 2022)
References is not available for this document.
Select All
1.
M. Younis, F. Q. de Almeida, M. Villano, S. Huber, G. Krieger and A. Moreira, "Digital beamforming for spaceborne reflector-based synthetic aperture radar Part 1: Basic imaging modes", IEEE Geosci. Remote Sens. Mag. (replaces Newsletter), vol. 9, no. 3, pp. 8-25, Sep. 2021, [online] Available: https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021.
2.
I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Boston, MA, USA:Artech House, 2005.
3.
F. D. Zan and A. M. Guarnieri, "TOPSAR: Terrain observation by progressive scans", IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2352-2360, Sep. 2006.
4.
M. Younis, Digital beam-forming for high resolution wide swath real and synthetic aperture radar, Jul. 2004.
5.
N. Gebert, Multi-channel azimuth processing for high-resolution wide-swath SAR imaging, Aug. 2009.
6.
S. Huber, Spaceborne SAR systems with digital beamforming and reflector antenna, Sep. 2014.
7.
G. Krieger, N. Gebert, M. Younis, F. Bordoni, A. Patyuchenko and A. Moreira, "Advanced concepts for ultra-wide-swath SAR imaging", Proc. Eur. Conf. Synthetic Aperture Radar (EUSAR’08), Jun. 2008.
8.
M. Younis, F. Bordoni, N. Gebert and G. Krieger, "Smart multi-aperture radar techniques for spaceborne remote sensing", Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS’08), pp. 278-281, Jul. 2008.
9.
M. Younis, A. Patyuchenko, S. Huber, G. Krieger and A. Moreira, "A concept for high performance reflector-based synthetic aperture radar", Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), pp. 249-252, Jul. 2010.
10.
The NASA ISRO SAR Mission NISAR: Quick facts, Jul. 2022, [online] Available: https://nisar.jpl.nasa.gov.
11.
P. Rosen et al., "The NASA-ISRO SAR (NISAR) mission dual-band radar instrument preliminary design", Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), pp. 3832-3835, Jul. 2017.
12.
A. Freeman et al., "SweepSAR: Beam-forming on receive using a reflector-phased array feed combination for spaceborne SAR", Proc. IEEE Radar Conf. (RadarCon’09), May 2009.
13.
Advanced Land Observing Satellite-4 (ALOS-4), Apr. 2021, [online] Available: https://global.jaxa.jp/projects/sat/alos4/.
14.
M. Davidson, N. Gebert and L. Giulicchi, "ROSE-L – The L-band SAR mission for Copernicus", Proc. Eur. Conf. Synthetic Aperture Radar (EUSAR), Mar. 2021.
15.
M. Villano, G. Krieger and A. Moreira, "Staggered SAR: High-resolution wide-swath imaging by continuous PRI variation", IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4462-4479, Jul. 2014.
16.
F. Q. de Almeida, T. Rommel, M. Younis, G. Krieger and A. Moreira, "Multichannel staggered SAR: System concepts with reflector and planar antennas", IEEE Trans. Aerosp. Electron. Syst. (1965–present), vol. 55, no. 2, pp. 877-902, Apr. 2019.
17.
G. Krieger et al., "The Tandem-L mission proposal: Monitoring Earth’s dynamics with high resolution SAR interferometry", Proc. IEEE Radar Conf., May 2009.
18.
A. Moreira et al., "Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the earth’s surface", IEEE Geosci. Remote Sens. Mag. (replaces Newsletters), vol. 3, no. 2, pp. 8-23, Jun. 2015.
19.
S. Huber, F. Q. de Almeida, M. Villano, M. Younis, G. Krieger and A. Moreira, "Tandem-L: A technical perspective on future spaceborne SAR sensors for earth observation", IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8, pp. 4792-4807, Aug. 2018.
20.
M. Younis, F. Q. de Almeida, F. Bordoni, P. López-Dekker and G. Krieger, "Digital beamforming techniques for multi-channel synthetic aperture radar", Proc. Int. Geosci. Remote Sens. Symp. (IGARSS), pp. 1412-1415, Jul. 2016.
21.
F. Almeida, M. Younis, G. Krieger and A. Moreira, "Multichannel staggered SAR azimuth processing", IEEE Trans. Geosci. Remote Sens., vol. 56, no. 5, pp. 2772-2788, May 2018.
22.
C. A. Balanis, Antenna Theory: Analysis and Design, Hoboken, NJ, USA:Wiley, 2016.
23.
BIOMASS ESA’s forest mission, Jul. 2022, [online] Available: https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Biomass.
24.
M. Younis et al., "Tandem-L instrument design and SAR performance overview", Proc. Int. Geosci. Remote Sens. Symp. (IGARSS), pp. 88-91, Jul. 2014.
25.
P. Focardi and P. Brown, "NISAR L-Band feed antenna tiles preliminary design", Proc. IEEE Int. Symp. Antennas Propag. (APSURSI), pp. 1379-1380, 2016.
26.
W. Imbriale, S. Gao and L. Boccia, Space Antenna Handbook, Hoboken, NJ, USA:Wiley, 2012.
27.
H. L. V. Trees, Optimum Array Processing: Part IV of Detection Estimation and Modulation Theory, Hoboken, NJ, USA:Wiley-Interscience, 2002.
28.
L. Godara, "Application of antenna arrays to mobile communications Part II: Beam-forming and direction-of-arrival considerations", Proc. IEEE, vol. 85, no. 8, pp. 1195-1245, Aug. 1997.
29.
S. Applebaum, "Adaptive arrays", IEEE Trans. Antennas Propag., vol. 24, no. 5, pp. 585-598, Sep. 1976.
30.
H. Ghaemi, S. Shaffer and S. Hensley, "Onboard digital beamforming: Algorithm and results", Proc. IEEE Geosci. Remote Sens. Symp. (IGARSS), pp. 3838-3841, Jul. 2014.