Loading [MathJax]/extensions/MathMenu.js
Temperature and vibration insensitive fiber-optic current sensor | IEEE Journals & Magazine | IEEE Xplore

Temperature and vibration insensitive fiber-optic current sensor


Abstract:

A robust interferometric fiber-optic current sensor with inherent temperature compensation of the Faraday effect is presented. Sensor configurations based on Sagnac and p...Show More

Abstract:

A robust interferometric fiber-optic current sensor with inherent temperature compensation of the Faraday effect is presented. Sensor configurations based on Sagnac and polarization-rotated reflection interferometers are considered. The sensing fiber is residing and thermally annealed in a coiled capillary of fused silica. The capillary is embedded in silicone within a ring-shaped housing. It is theoretically and experimentally shown that the temperature dependence of the birefringent fiber-optic phase retarders of the interferometers can be employed to balance the temperature dependence of the Faraday effect (0.7/spl times/10/sup -4///spl deg/C). Insensitivity of the sensor to temperature within 0.2% is demonstrated between -35/spl deg/C and 85/spl deg/C. The influence of the phase retarders on the linearity of the sensor is also addressed. Furthermore, the sensitivity to vibration of the two configurations at frequencies up to 500 Hz and accelerations up to 10 g is compared. High immunity of the reflective sensor to mechanical perturbations is verified.
Published in: Journal of Lightwave Technology ( Volume: 20, Issue: 2, February 2002)
Page(s): 267 - 276
Date of Publication: 07 August 2002

ISSN Information:

References is not available for this document.

I. Introduction

Current sensors employing the Faraday effect in a coil of optical fiber are very attractive for metering, control, and protection in high-voltage substations. Advantages include the inherent electric separation of the sensor electronics at ground potential from the sensing fiber coil at high voltage as well as the small size and weight. As a result, the sensors can be integrated into existing high-voltage equipment such as circuit breakers and bushings. This eliminates the need for bulky stand-alone devices for current measurement. Furthermore, the output signals, in contrast to the power outputs of conventional inductive current transformers, are compatible with modern digital control and protection systems. For a review of optical current sensing techniques, see [1].

Select All
1.
Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan and D. A. Jackson, "Recent progress in optical current sensing techniques", Rev. Sci. Instrum., vol. 66, no. 5, pp. 3097-3111, 1995.
2.
International standard for current transformers, 1987.
3.
D. Tang, A. H. Rose, G. W. Day and S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: Applications to optical fiber current sensors", J. Lightwave Technol., vol. 9, pp. 1031-1037, Aug. 1991.
4.
K. Kurosawa, S. Yoshida, K. Sakamoto, I. Masuda and T. Yamashita, "An optical fiber-type current sensor utilizing the Faraday effect of flint glass fiber", Proc. Int. Conf. Optical Fibre Sensors, vol. 2360, pp. 24-27, 1994.
5.
R. Ulrich and A. Simon, "Polarization optics of twisted single-mode fibers", Appl. Opt., vol. 18, no. 13, pp. 2241-2251, 1979.
6.
F. Maystre and A. Bertholds, "Magneto-optic current sensor using a helical-fiber FabryPerot resonator", Opt. Lett., vol. 14, no. 11, pp. 587-589, 1989.
7.
R. I. Laming and D. N. Payne, "Electric current sensors employing spun highly birefringent optical fibers", J. Lightwave Technol., vol. 7, pp. 2084-2094, Dec. 1989.
8.
P. Menke and T. Bosselmann, "Temperature compensation in magneto-optic ac current sensors using an intelligent acdc signal evaluation", J. Lightwave Technol., vol. 13, pp. 1362-1370, July 1995.
9.
A. Papp and H. Harms, "Magnetooptical current transformer 1: Principles", Appl. Opt., vol. 19, no. 22, pp. 3729-3734, 1980.
10.
P. A. Nicatti and P. Robert, "Stabilized current sensor using a Sagnac interferometer", J. Phys. E: Sci. Instrum., vol. 21, pp. 791-796, 1988.
11.
P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner and M. N. Deeter, "Temperature dependence of the Verdet constant in several diamagnetic glasses", Appl. Opt., vol. 30, no. 10, pp. 1176-1178, 1991.
12.
G. Frosio, K. Hug and R. Dändliker (Dandliker), "All-fiber Sagnac current sensor" in Proc. Opto92, France, Paris, pp. 560-564, 1992.
13.
K. Bohnert, H. Brändle (Brandle) and G. Frosio, "Field test of interferometric optical fiber high-voltage and current sensors", Proc. Int. Conf. Optical Fiber Sensors, vol. 2360, pp. 16-19, 1994.
14.
J. Blake, P. Tantaswadi and R.T. de Carvalho, "In-line Sagnac interferometer current sensor", IEEE Trans. Power Delivery, vol. 11, pp. 116-121, Jan. 1996.
15.
A. H. Rose, S. M. Etzel and C. M. Wang, "Verdet constant dispersion in annealed optical fiber current sensors", J. Lightwave Technol., vol. 15, pp. 803-807, July 1997.
16.
S. X. Short, A. A. Tselikov, J. U. de Arruda and J. N. Blake, "Imperfect quarter-waveplate compensation in Sagnac interferometer-type current sensors", J. Lightwave Technol., vol. 16, pp. 1212-1219, July 1998.
17.
R. A. Bergh, H. C. Lefevre and H. J. Shaw, "An overview of fiber-optic gyroscopes", J. Lightwave Technol., vol. LT, pp. 91-107, 1984.
18.
A. Enokihara, M. Izutsu and T. Sueta, "Optical fiber sensors using the method of polarization-rotated reflection", J. Lightwave Technol., vol. 5, pp. 1584-1590, Nov. 1987.
19.
G. Frosio, Reciprocal interferometers for fiber-optic Faraday current sensors, 1992.
20.
G. Frosio and R. Dändliker (Dandliker), "Reciprocal reflection interferometer for a fiber-optic Faraday current sensor", Appl. Opt., vol. 33, no. 25, pp. 6111-6122, 1994.
21.
S. X. Short, P. Tantaswadi, R. T. de Carvalho, B. D. Russell and J. Blake, "An experimental study of acoustic vibration effects in optical fiber current sensors", IEEE Trans. Power Delivery, vol. 11, pp. 1702-1706, Oct. 1996.
22.
R. B. Dyott, 1998.
23.
F. Zhang and J. W. Lit, "Temperature and strain sensitivity measurements of high-birefringent polarization maintaining fibers", Appl. Opt., vol. 32, no. 13, pp. 2213-2218, 1993.
24.
R. C. Jones, "A new calculus for the treatment of optical systemsPart I: Desciption and discussion of the calculus", J. Opt. Soc. Amer., vol. 31, pp. 488-493, 1941.

Contact IEEE to Subscribe

References

References is not available for this document.