An array of trapped atomic ions that are laser cooled and isolated in an ultrahigh-vacuum environment presents one of the most advanced physical platforms for realizing a practical quantum computer. Small-scale ion quantum computers up to tens of ions have been built and achieved the highest fidelities on elementary quantum operations and overall quantum volume (QV). This article provides an overview of the elements of trapped-ion quantum computing (TIQC), current achievements in the field, and future perspectives.
Abstract:
An array of trapped atomic ions that are laser cooled and isolated in an ultrahigh-vacuum environment presents one of the most advanced physical platforms for realizing a...Show MoreMetadata
Abstract:
An array of trapped atomic ions that are laser cooled and isolated in an ultrahigh-vacuum environment presents one of the most advanced physical platforms for realizing a practical quantum computer. Small-scale ion quantum computers up to tens of ions have been built and achieved the highest fidelities on elementary quantum operations and overall quantum volume (QV). This article provides an overview of the elements of trapped-ion quantum computing (TIQC), current achievements in the field, and future perspectives.
Published in: IEEE Nanotechnology Magazine ( Volume: 16, Issue: 4, August 2022)
References is not available for this document.
Select All
1.
R. Landauer, "Irreversibility and heat generation in the computing process", IBM J. Res. Dev., vol. 5, no. 3, pp. 183-191, 1961.
2.
P. Benioff, "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines", J. Stat. Phys., vol. 22, no. 5, pp. 563-591, May 1980.
3.
R. P. Feynman, "Simulating physics with computers", Int. J. Theor. Phys., vol. 21, no. 6, pp. 467-488, Jun. 1982.
4.
D. Deutsch, "Quantum theory the Church-Turing principle and the universal quantum computer", Proc. Roy. Soc. London A Math. Phys. Sci., vol. 400, no. 1818, pp. 97-117, Jul. 1985.
5.
P. W. Shor, "Algorithms for quantum computation: Discrete logarithms and factoring", Proc. 35th Annu. Symp. Found. Comput. Sci., pp. 124-134, 1994.
6.
R. L. Rivest, A. Shamir and L. Adleman, "A method for obtaining digital signatures and public-key cryptosystems", Commun. ACM, vol. 21, no. 2, pp. 120-126, Feb. 1978.
7.
D. DiVincenzo, "The physical implementation of quantum computation", Fortschritte der Physik, vol. 48, no. 9, pp. 771-783, Mar. 2000.
8.
R. Raussendorf and T.-C. Wei, "Quantum computation by local measurement", Annu. Rev. Condens. Matter Phys., vol. 3, no. 1, pp. 239-261, Feb. 2012.
9.
M. Freedman, A. Kitaev, M. Larsen and Z. Wang, "Topological quantum computation", Bull. Amer. Math. Soc., vol. 40, no. 1, pp. 31-38, 2003.
10.
T. Albash and D. A. Lidar, "Adiabatic quantum computation", Rev. Modern Phys., vol. 90, no. 1, pp. 015002,, Jan. 2018.
11.
J. I. Cirac and P. Zoller, "Quantum computations with cold trapped ions", Phys. Rev. Lett., vol. 74, no. 20, pp. 4091-4094, May 1995.
12.
C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano and D. J. Wineland, "Demonstration of a fundamental quantum logic gate", Phys. Rev. Lett., vol. 75, no. 25, pp. 4714-4717, Dec. 1995.
13.
A. Sørensen and K. Mølmer, "Quantum computation with ions in thermal motion", Phys. Rev. Lett., vol. 82, no. 9, pp. 1971-1974, Mar. 1999.
14.
G. J. Milburn, S. Schneider and D. F. V. James, "Ion trap quantum computing with warm ions", Fortschritte der Physik, vol. 48, no. 9, pp. 801-810, Oct. 2000.
15.
K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan and C. Monroe, "Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes", Phys. Rev. Lett., vol. 103, no. 12, pp. 120,502,, Sep. 2009.
16.
A. Ransford, C. Roman, T. Dellaert, P. McMillin and W. C. Campbell, "Weak dissipation for high-fidelity qubit-state preparation and measurement", Phys. Rev. A, vol. 104, no. 6, pp. L060402,, Dec. 2021.
17.
C. D. Bruzewicz, J. Chiaverini, R. McConnell and J. M. Sage, "Trapped-ion quantum computing: Progress and challenges", Appl. Phys. Rev., vol. 6, no. 2, pp. 021314,, Jun. 2019.
18.
C. F. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner and R. Blatt, "Experimental demonstration of ground state laser cooling with electromagnetically induced transparency", Phys. Rev. Lett., vol. 85, no. 26, pp. 5547-5550, Dec. 2000.
19.
J. M. Pino et al., "Demonstration of the trapped-ion quantum CCD computer architecture", Nature, vol. 592, no. 7853, pp. 209-213, Apr. 2021.
20.
R. Srinivas et al., "High-fidelity laser-free universal control of trapped ion qubits", Nature, vol. 597, no. 7875, pp. 209-213, Sep. 2021.
21.
J. J. García-Ripoll, P. Zoller and J. I. Cirac, "Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing", Phys. Rev. Lett., vol. 91, no. 15, pp. 157,901,, Oct. 2003.
22.
A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation and J. M. Gambetta, "Validating quantum computers using randomized model circuits", Phys. Rev. A, vol. 100, no. 3, pp. 032328,, Sep. 2019.
23.
D. Kielpinski, C. Monroe and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer", Nature, vol. 417, no. 6890, pp. 709-711, Jun. 2002.
24.
B. Lekitsch et al., "Blueprint for a microwave trapped ion quantum computer", Sci. Adv., vol. 3, no. 2, pp. e1601540, Feb. 2017.
25.
L.-M. Duan and C. Monroe, "Colloquium: Quantum networks with trapped ions", Rev. Modern Phys., vol. 82, no. 2, pp. 1209-1224, Apr. 2010.
26.
K. Wright et al., "Benchmarking an 11-qubit quantum computer", Nature Commun., vol. 10, no. 1, pp. 5464, Nov. 2019.
27.
N. Friis et al., "Observation of entangled states of a fully controlled 20-qubit system", Phys. Rev. X, vol. 8, no. 2, pp. 021012,, Apr. 2018.
28.
J. Zhang et al., "Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator", Nature, vol. 551, no. 7682, pp. 601-604, Nov. 2017.
29.
C. Hempel et al., "Quantum chemistry calculations on a trapped-ion quantum simulator", Phys. Rev. X, vol. 8, no. 3, pp. 031022,, Jul. 2018.
30.
S. Johri et al., "Nearest centroid classification on a trapped ion quantum computer", Npj Quantum Inf., vol. 7, no. 1, pp. 122, Aug. 2021.