Light-induced self-writing effects in bulk chalcogenide glass | IEEE Journals & Magazine | IEEE Xplore

Light-induced self-writing effects in bulk chalcogenide glass


Abstract:

A waveguide can be self-written by a beam of light propagating in a photosensitive material. We report the first observation of self-writing effects in bulk chalcogenide ...Show More

Abstract:

A waveguide can be self-written by a beam of light propagating in a photosensitive material. We report the first observation of self-writing effects in bulk chalcogenide glass and investigate the influences of different writing beam sizes and powers. We observe increases in refractive index of 2.5/spl times/10/sup -4/ due to illumination at 1047 nm in Ce-doped Ga-La-S. Simulations of the self-writing process show a good agreement with the experimental results. This verifies our numerical model and allows the dynamics of this process to be explored. Using this knowledge, we predict the experimental parameters and conditions required to write waveguides, tapers, and ultimately complex three-dimensional (3-D) structures.
Published in: Journal of Lightwave Technology ( Volume: 20, Issue: 1, January 2002)
Page(s): 78 - 85
Date of Publication: 07 August 2002

ISSN Information:

References is not available for this document.

I. Introduction

This paper explores self-writing processes in which a beam of light induces refractive index changes that dynamically evolve to form a waveguide, which then guides this light [1]. To perform self-writing, a photosensitive material must be used; materials are described as photosensitive if they experience a long-lasting refractive index change when exposed to light. We begin by briefly illustrating this concept, which is described in detail in [1]–[4].

Select All
1.
T. M. Monro, C. M. de Sterke and L. Poladian, "Investigation of waveguide growth in photosensitive germanosilicate glass", J. Opt. Soc. Amer. B, vol. 13, pp. 2824-2832, Dec. 1996.
2.
T. M. Monro, C. M. de Sterke and L. A. Poladian, "Analysis of self-written waveguides in photopolymers and photosensitive materials", Phys. Rev. E, vol. 57, pp. 1104-1113, Jan. 1998.
3.
T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke and L. Poladian, "Observation of self-trapping of light in a self-written channel in photosensitive glass", Phys. Rev. Lett., vol. 80, pp. 4072-4075, May 1999.
4.
T. M. Monro, C. M. de Sterke and L. Poladian, "Catching light in its own trap", J. Mod. Opt., vol. 48, pp. 191-238, 2001.
5.
M. Svalgaard, C. V. Poulsen, A. Bjarklev and O. Poulsen, "Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films", Electron. Lett., vol. 30, pp. 1401-1403, Aug. 1994.
6.
C. Meneghini and A. Villeneuve, " As \$_{2}\$ S \$_{3}\$ photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides ", J. Opt. Soc. Amer. B, vol. 15, pp. 2946-2950, Dec. 1998.
7.
A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization", Opt. Lett., vol. 21, pp. 24-26, Jan. 1996.
8.
S. J. Frisken, "Light-induced optical waveguide uptapers", Opt. Lett., vol. 18, pp. 1035-1037, July 1993.
9.
S. Shoji and S. Kawata, "Optically-induced growth of fiber patterns into a photopolymerizable resin", Appl. Phys. Lett., vol. 75, pp. 737-739, Aug. 1999.
10.
S. Shoji and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin", Appl. Phys. Lett., vol. 76, pp. 2668-2670, May 2000.
11.
D. J. Moss, J. Cannings, M. Faith, S. Madden, P. Kemeny, L. Poladian, et al., "Ultra-strong UV written gratings in PECVD grown germanosilicate waveguides", Photosensitive Opt. Mater. Devices, vol. 2998, pp. 142-145, 1997.
12.
M. Fujimaki, S. Shimoto, N. Miyazaki, Y. Ohki, K. S. Seol and K. Imamura, " Effect of annealing on Ge-doped SiO \$_{2}\$ thin films ", J. Appl. Phys., vol. 86, pp. 5270-5273, Nov. 1999.
13.
H. Yayama, S. Fujino, K. Morinaga, H. Takebe, D. W. Hewak and D. N. Payne, "Refractive index dispersion of gallium lanthanum sulfide and oxysulfide glasses", J. Non-Cryst. Solids, vol. 239, pp. 187-191, Oct. 1998.
14.
D. J. Brady, T. Schweizer, J. Wang and D. W. Hewak, "Minimum loss predictions and measurements in gallium lanthanum sulphide based glasses and fiber", J. Non-Cryst. Solids, vol. 242, pp. 92-98, Dec. 1998.
15.
G. Meltz, W. W. Morey and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method", Opt. Lett., vol. 14, pp. 823-825, Aug. 1989.
16.
A. E. Siegman, Lasers, CA, Mill Valley:Univ. Sci. Books, pp. 627-628, 1986.
17.
T. M. Monro, C. M. de Sterke and L. Poladian, "Analysis of self-written waveguide experiments", J. Opt. Soc. Amer. B, vol. 16, pp. 1680-1685, Oct. 1999.
18.
A. W. Snyder and J. D. Love, Optical Waveguide Theory, U.K., London, pp. 7, 1983.
19.
K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol and G. Wylangowski, "Pulsed laser deposition of GaLaS chalcogenide glass thin film optical waveguides", Appl. Phys. Lett., vol. 63, pp. 1601-1603, Sept. 1993.
Contact IEEE to Subscribe

References

References is not available for this document.