Loading [MathJax]/extensions/MathMenu.js
Visible Blind Quadrant Sun Position Sensor in a Silicon Carbide Technology | IEEE Conference Publication | IEEE Xplore

Visible Blind Quadrant Sun Position Sensor in a Silicon Carbide Technology


Abstract:

In this paper, we present a quadrant sun position sensor microsystem device in a silicon carbide technology that operates in a field-of-view of ±33° and reaches a mean er...Show More

Abstract:

In this paper, we present a quadrant sun position sensor microsystem device in a silicon carbide technology that operates in a field-of-view of ±33° and reaches a mean error of 1.9° in this range. This will allow, for the first time, an inherently visible blind sun position sensor in a CMOS compatible technology. Opto-electronic integration of the photodetectors and CMOS readout circuitry on-chip is vital to compete with the performance of silicon state-of-the-art and for the concept to be adopted by industry, which is where previous implementations of visible blind sun sensors are lacking.
Date of Conference: 09-13 January 2022
Date Added to IEEE Xplore: 11 February 2022
ISBN Information:

ISSN Information:

Conference Location: Tokyo, Japan

Funding Agency:

References is not available for this document.

Introduction

The sun position sensor is an attitude sensor that is able to provide information on the direction towards the Sun. It is a vital device for satellite attitude control in outer space and is continuously subjected to further improvements. Silicon state-of-the-art commercial sun position sensors suffer from an inherent sensitivity to the albedo, which is the visible light reflected by the Earth. This undesired sensitivity is directly related the semiconductor bandgap, as this determines the photodetector spectral response. The importance of visible blindness for sun position sensors was previously recognized and implemented in an InGaAs technology [1] and a GaN-on-sapphire technology [2] to target spectral bands in IR and UV respectively. Both of the previous implementations, as well as this work, rely on the collimating sun sensor architecture [3].

Select All
1.
H. W. Wu, A. Emadi, G. de Graaf, J. Leijtens and R. F. Wolffenbuttel, "Design and fabrication of an albedo insensitive analog sun sensor", Procedia Engineering, vol. 25, pp. 527-530, 2011.
2.
R. A. Miller, H. So, H. C. Chiamori, A. J. Suria, C. A. Chapin and D. G. Senesky, "A microfabricated sun sensor using GaN-on-sapphire ultraviolet photodetector arrays", Review on Scientific Instruments, vol. 97, no. 095003, 2016.
3.
L. S. Salgado-Conrado, "A review on sun position sensors used in solar applications", Renewable and Sustainable Energy Reviews, vol. 82, pp. 2128-2146, 2018.
4.
"International Technology Roadmap for Wide Bandgap Power Semiconductors (ITRW)", IEEE Power Electronics Society (PELS), 2019.
5.
R. A. R. Young, D. T. Clark, J. D. Cormack, A. E. Murphy, D. A. Smith, R. F. Thompson, et al., "High temperature digital and analogue integrated circuits in silicon carbide", Materials Science Forum, vol. 740–742, pp. 1065-1068, 2013.
6.
E. P. Ramsay, J. Breeze, D. T. Clark, A. E. Murphy, D. A. Smith, R. F. Thompson, et al., "High temperature CMOS circuits on silicon carbide", Materials Science Forum, vol. 821–823, pp. 859-862, 2015.
7.
L. Lanni, B. G. Malm, M. Ostling and C.-M. Zetterling, "Lateral p-n-p transistors and complementary SiC bipolar technology", IEEE Electron Device Letters, vol. 35, pp. 428-430, 2014.
8.
C.-M. Zetterling, A. Hallén, R. H. S. Kargarrazi, L. Lanni, B. G. Malm, S. Mardani, et al., "Bipolar integrated circuits in SiC for extreme environment operation", Semiconductor Science and Technology, vol. 32, no. 034002, 2017.
9.
J. Romijn, S. Vollebregt, L. M. Middelburg, B. El Mansouri, H. W. van Zeijl, A. May, et al., "Integrated digital and analog circuit blocks in a scalable silicon carbide CMOS technology", IEEE Transactions on Electron Devices, 2021.
10.
A. Abbasi, S. Roy, R. Murphree, A.-U. Rashid, M. M. Hossain, P. Lai, et al., "Characterization of a silicon carbide BCD process for 300 °C circuits", IEEE 7 th Workshop on Wide Bandgap Power Devices and Applications (WiPDA) , pp. 231-236, 2019.
11.
M. Albrecht, T. Erlbacher, A. J. Bauer and L. Frey, "Improving 5V digital 4H-SiC CMOS ICs for operating at 400 °C using PMOS channel implantation", Materials Science Forum, vol. 963, pp. 827-831, 2019.
12.
J. Romijn, S. Vollebregt, H. W. van Zeijl, G. Q. Zhang, J. Leijtens and P. M. Sarro, "Towards a scalable sun position sensor with monolithic integration of the 3D optics for miniaturized satellite attitude control", 34 th International Conference on Micro Electro Mechanical Systems (MEMS) , pp. 642-645, 2021.
13.
N. Xie and A. J. P. Theuwissen, "Low-power high accuracy micro-digital sun sensor by means of a CMOS image sensor", Journal of Electronic Imaging, vol. 22, no. 033030, 2013.
14.
C. D. Matthus, L. Di Benedetto, M. Kocher, A. J. Bauer, G. D. Licciardo, A. Rubino, et al., "Feasibility of 4H-SiC p-i-n diode for sensitive temperature measurements between 20.5 K and 802 K", IEEE Sensors Journal, vol. 19, pp. 2871-2877, 2019.
15.
J. Romijn, L. M. Middelburg, S. Vollebregt, B. El Mansouri, H. W. van Zeijl, A. May, et al., "Resistive and CTAT temperature sensors in a silicon carbide CMOS technology", IEEE Sensors, 2021.
Contact IEEE to Subscribe

References

References is not available for this document.