Loading web-font TeX/Main/Regular
Occupancy Grid Generation With Dynamic Obstacle Segmentation in Stereo Images | IEEE Journals & Magazine | IEEE Xplore

Occupancy Grid Generation With Dynamic Obstacle Segmentation in Stereo Images


Abstract:

The detection of dynamic and static obstacles is a key task for the navigation of autonomous ground vehicles. The article presents a new algorithm for generating an occup...Show More

Abstract:

The detection of dynamic and static obstacles is a key task for the navigation of autonomous ground vehicles. The article presents a new algorithm for generating an occupancy map of the surrounding space from noisy point clouds obtained from one or several stereo cameras. The camera images are segmented by the proposed deep neural network FCN-ResNet-M-OC, which combines the speed of the FCN-ResNet method and improves the quality of the model using the concept of object context representation. The paper investigates supervised approaches to network training on unbalanced samples with road scenes such as the weighted cross entropy and the Focal Loss. The occupancy map is built from point clouds with semantic labels, in which static environment and potentially dynamic obstacles are highlighted. Our solution is operational in real time and applicable on platforms with limited computing resources. The approach was tested on autonomous vehicle datasets: Semantic KITTI, KITTI-360, Mapillary Vistas and custom OpenTaganrog. The usage of semantically labeled point clouds increased the precision of obstacle detection by an average of 17%. The performance of the entire approach on various computing platforms with Jetson Xavier, RTX3070, GPUs NVidia Tesla V100 is respectively from 10 to 15 FPS for input image resolution 1920\times 1080 pixels.
Published in: IEEE Transactions on Intelligent Transportation Systems ( Volume: 23, Issue: 9, September 2022)
Page(s): 14779 - 14789
Date of Publication: 15 December 2021

ISSN Information:

References is not available for this document.

I. Introduction

To navigate safely and efficiently in areas with a large number of dynamic objects, unmanned ground vehicles (UGV) must synthesize a map of the surrounding space in real time. In this case, objects should be divided into static and potentially dynamic, with the latter category requiring more attention.

Select All
1.
H. Moravec and A. Elfes, "High resolution maps from wide angle sonar", Proc. IEEE Int. Conf. Robot. Autom., vol. 2, pp. 116-121, Mar. 1985.
2.
J. Choi, S. Ulbrich, B. Lichte and M. Maurer, "Multi-target tracking using a 3D-LIDAR sensor for autonomous vehicles", Proc. 16th Int. Conf. Intell. Transp. Syst., pp. 881-886, Oct. 2013.
3.
A. Asvadi, C. Premebida, P. Peixoto and U. Nunes, "3D LIDAR-based static and moving obstacle detection in driving environments: An approach based on voxels and multi-region ground planes", Robot. Auton. Syst., vol. 83, pp. 299-311, Dec. 2016.
4.
A. Börcs, B. Nagy and C. Benedek, "Instant object detection in LIDAR point clouds", IEEE Geosci. Remote Sens. Lett., vol. 14, no. 7, pp. 992-996, Jul. 2017.
5.
F. Oniga and S. Nedevschi, "Processing dense stereo data using elevation maps: Road surface traffic isle and obstacle detection", IEEE Trans. Veh. Technol., vol. 59, no. 3, pp. 1172-1182, Mar. 2010.
6.
P. Fleischmann and K. Berns, "A stereo vision based obstacle detection system for agricultural applications", Proc. 10th Int. Conf. Field Service Robot. Results, pp. 217-231, 2016.
7.
A. Geiger, P. Lenz and R. Urtasun, "Are we ready for autonomous driving? The KITTI vision benchmark suite", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3354-3361, Jun. 2012.
8.
M. Cordts et al., "The cityscapes dataset for semantic urban scene understanding", Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 3213-3223, Jun. 2016.
9.
P. Babahajiani, L. Fan, J. Kamarainen and M. Gabbouj, "Automated super-voxel based features classification of urban environments by integrating 3D point cloud and image content", Proc. IEEE Int. Conf. Signal Image Process. Appl. (ICSIPA), pp. 372-377, 2015.
10.
A. Asvadi, L. Garrote, C. Premebida, P. Peixoto and U. J. Nunes, "Multimodal vehicle detection: Fusing 3D-LIDAR and color camera data", Pattern Recognit. Lett., vol. 115, pp. 20-29, Nov. 2017.
11.
F. Neuhaus, D. Dillenberger, J. Pellenz and D. Paulus, "Terrain drivability analysis in 3D laser range data for autonomous robot navigation in unstructured environments", Proc. IEEE Conf. Emerg. Technol. Factory Autom., pp. 1-4, Dec. 2009.
12.
J. Rieken, R. Matthaei and M. Maurer, "Benefits of using explicit ground-plane information for grid-based urban environment modeling", Proc. 18th Int. Conf. Inf. Fusion, pp. 2049-2056, 2015.
13.
F. Moosmann, O. Pink and C. Stiller, "Segmentation of 3D LIDAR data in non-flat urban environments using a local convexity criterion", Proc. IEEE Intell. Vehicles Symp., pp. 215-220, Jun. 2009.
14.
M. Himmelsbach, F. V. Hundelshausen and H.-J. Wuensche, "Fast segmentation of 3D point clouds for ground vehicles", Proc. IEEE Intell. Veh. Symp., pp. 560-565, Dec. 2010.
15.
D. Zermas, I. Izzat and N. Papanikolopoulos, "Fast segmentation of 3D point clouds: A paradigm on LiDAR data for autonomous vehicle applications", Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 5067-5073, May 2017.
16.
P. Burger and H.-J. Wuensche, "Fast multi-pass 3D point segmentation based on a structured mesh graph for ground vehicles", Proc. IEEE Intell. Veh. Symp. (IV), pp. 2150-2156, Jun. 2018.
17.
K. Schauwecker and A. Zell, "Robust and efficient volumetric occupancy mapping with an application to stereo vision", Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 6102-6107, May 2014.
18.
A. Souza and L. M. G. Gonçalves, "Occupancy-elevation grid: An alternative approach for robotic mapping and navigation", Robotica, vol. 34, no. 11, pp. 2592-2609, 2016.
19.
T. Eppenberger, G. Cesari, M. Dymczyk, R. Siegwart and R. Dubé, "Leveraging stereo-camera data for real-time dynamic obstacle detection and tracking", arXiv:2007.10743, 2020.
20.
R. O. Chavez-Garcia and O. Aycard, "Multiple sensor fusion and classification for moving object detection and tracking", IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 525-534, Feb. 2016.
21.
S.-I. Oh and H.-B. Kang, "Fast occupancy grid filtering using grid cell clusters from LiDAR and stereo vision sensor data", IEEE Sensors J., vol. 16, no. 19, pp. 7258-7266, Dec. 2016.
22.
H. Jaspers, M. Himmelsbach and H.-J. Wuensche, "Multi-modal local terrain maps from vision and LIDAR", Proc. IEEE Intell. Veh. Symp. (IV), pp. 1119-1125, Mar. 2017.
23.
A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss and W. Burgard, "OctoMap: An efficient probabilistic 3D mapping framework based on octrees", Auton. Robot., vol. 34, no. 3, pp. 189-206, 2013.
24.
L. Schneider et al., "Semantic stixels: Depth is not enough", Proc. IEEE Intell. Vehicles Symp. (IV), pp. 110-117, Jun. 2016.
25.
D. Kochanov, A. Ošep, J. Stückler and B. Leibe, "Scene flow propagation for semantic mapping and object discovery in dynamic street scenes", Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pp. 1785-1792, Mar. 2016.
26.
S. Yang, Y. Huang and S. Scherer, "Semantic 3D occupancy mapping through efficient high order CRFs", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 590-597, Sep. 2017.
27.
P. Ondruska, J. Dequaire, D. Zeng Wang and I. Posner, "End-to-end tracking and semantic segmentation using recurrent neural networks", arXiv:1604.05091, 2016.
28.
P. Nikdel, M. Chen and R. Vaughan, "Recognizing and tracking high-level human-meaningful navigation features of occupancy grid maps", Proc. 17th Conf. Comput. Robot Vis. (CRV), pp. 62-69, May 2020.
29.
J. Redmon and A. Farhadi, "Yolo9000: Better faster stronger", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 7263-7271, Oct. 2017.
30.
S. Wirges, C. Stiller and F. Hartenbach, "Evidential occupancy grid map augmentation using deep learning", Proc. IEEE Intell. Veh. Symp. (IV), pp. 668-673, Jun. 2018.

Contact IEEE to Subscribe

References

References is not available for this document.