A graphical abstract for A Novel Multi-Objective Based Reliability Assessment in Saudi Arabian Power System Arrangement.
Abstract:
In a smart grid power system, reliability performance plays a crucial factor and requires additional focus. Moreover, the integration of Battery Energy Storage (BES) sche...Show MoreMetadata
Abstract:
In a smart grid power system, reliability performance plays a crucial factor and requires additional focus. Moreover, the integration of Battery Energy Storage (BES) scheme, Solar Photovoltaic (SPV) and wind system in the smart grid system provide significant proficiency and reliability to the utilities. However, the grid coordination with the PV and other resources tends to cause major problems such as power interruption or else power outage. The outage of the power in the grid can cause power loss to the distribution system. Therefore, the novel reliability valuation of the smart grid system is developed for exaggeration of the SPV, wind and BES utilities based on the grid incorporation in Saudi Arabia. Furthermore, a novel Hobbled Shepherd Optimization (HSO) for boost converter control and Multi-Objective Based Golden Eagle (MOGE) algorithm for inverter control is proposed. The execution of this work has been done in MATLAB/Simulink. The simulation outcomes show that the projected method has attained the finest Total Harmonic Distortion (THD) and power loss. Also, the optimal reliability improvement has achieved by the projected methods while compared with the conventional methods in terms of Loss of Load Expected (LOLE), Loss of Load Probabilities (LOLP) and Expected Energy Not Supplied (EENS).
A graphical abstract for A Novel Multi-Objective Based Reliability Assessment in Saudi Arabian Power System Arrangement.
Published in: IEEE Access ( Volume: 9)