Loading [MathJax]/extensions/MathZoom.js
A low-cost 8 to 26.5 GHz phased array antenna using a piezoelectric transducer controlled phase shifter | IEEE Journals & Magazine | IEEE Xplore

A low-cost 8 to 26.5 GHz phased array antenna using a piezoelectric transducer controlled phase shifter


Abstract:

A new phased array antenna of wide bandwidth and good beam scanning angle has been developed using a low cost multiline phase shifter controlled by a piezoelectric transd...Show More

Abstract:

A new phased array antenna of wide bandwidth and good beam scanning angle has been developed using a low cost multiline phase shifter controlled by a piezoelectric transducer (PET) and a stripline fed Vivaldi antenna array. The multiline progressive PET phase shifter has a low perturbation loss of less than 2 dB and a total loss of less than 4 dB up to 40 GHz with a maximum phase shift of 480/spl deg/. The proposed phased array antenna consists of four E- or H-plane Vivaldi antennas, a PET phase shifter, and a power divider. The phased array shows a wide beam scanning capability of /spl plusmn/27/spl deg/ over a wide bandwidth from 8 to 26.5 GHz covering X, Ku, and K bands.
Published in: IEEE Transactions on Antennas and Propagation ( Volume: 49, Issue: 9, September 2001)
Page(s): 1290 - 1298
Date of Publication: 30 September 2001

ISSN Information:

References is not available for this document.

I. Introduction

Nowadays multifunction radar and communication systems demand multiband or multifrequency (i.e., wideband) phased array antennas. These phased array antenna systems play a major role in defense applications [1] and wireless satellite communication systems [2]–[4]. Phased array antenna design, especially wideband design, results in an expensive system using present day technology. This is due to the fact that there are typically several thousands of elements in an array and each element requires a phase shifter and a driver. Therefore, reducing the cost and complexity of the phase shifters is an important consideration in the design of phased arrays. The phased array reported here uniquely incorporates a multiline configuration with progressive phase shifts [5], [6]. The array does not individually contain traditional diode (PIN) or ferrite phase shifters but includes a new phase shifter controlled by a piezoelectric transducer (PET) or piezoelectric actuator. The PET is a piezoelectric ceramic, deflected by an applied voltage. A dielectric perturber attached to the PET moves vertically on the microstrip lines with the DC bias voltage. The dielectric perturbation changes the propagation constant and phase [7]. The new method will reduce the number of phase shifters from () to () where is the number of columns and is the number of rows in a two-dimensional (2-D) planar phased array [8].

Select All
1.
R.-S. Chu, K. M. Lee and A. T. S. Wang, "Multiband phased-array antenna with interleaved tapered-elements and waveguide radiators", IEEE Int. Antennas and Propagat. Symp. Dig., pp. 1616-1619, 1996.
2.
C. Hemmi, R. T. Dover, F. German and A. Vespa, "Multifunction wide-band array design", IEEE Trans. Antennas Propagat., vol. 47, pp. 425-431, Mar. 1999.
3.
B. R. Elbert, The Satellite Communication Applications Handbooks, Norwood, MA:Artech House, pp. 379-382, 1997.
4.
M. E. Bialkowski and N. C. Karmakar, "A two-ring circular phased-array antenna for mobile satellite communications", IEEE Antennas Propagat. Mag., vol. 41, pp. 14-23, June 1999.
5.
A. Brown, L. Kempel, K. Trott, H. How and J. Volakis, "Compact integrated coplanar phase shifter/antenna array", IEEE Int. Antennas and Propagat. Symp. Dig., pp. 662-665, June 1999.
6.
T.-Y. Yun and K. Chang, "A phased-array antenna using a multiline phase shifter controlled by a piezoelectric transducer", IEEE Int. Microwave. Symp. Digest, pp. 831-833, June 2000.
7.
T.-Y. Yun and K. Chang, "A low loss time-delay phase shifter controlled by piezoelectric transducer to perturb microstrip line", IEEE Microwave Guided Wave Lett., vol. 10, pp. 96-98, Mar. 2000.
8.
J. B. L. Rao, D. P. Patel and V. Krichevsky, "Voltage-controlled ferroelectric lens phase arrays", IEEE Trans. Antennas Propagat., vol. 47, pp. 458-468, Mar. 1999.
9.
H. How, T.-M. Fang, D.-X. Guan and C. Vittoria, "Magnetic steerable ferrite patch antenna array", IEEE Trans. Magn., vol. 30, pp. 4551-4553, Nov. 1994.
10.
L. R. Lewis, M. Fasset and J. Hunt, "A broadband stripline array element", IEEE Int. Antennas and Propagat. Symp. Dig., pp. 335-337, 1974.
11.
D. H. Schaubert, "Wide-band phased arrays of Vivaldi notch antenna", IEE Tenth Int. Conf. Antennas and Propagat., vol. 1, pp. 6-12, 1997.
12.
R. A. Marino, "A novel tapered slot PCS antenna array and model", Microwave J., pp. 90-100, Jan. 1999.
13.
D. M. Pozar, Microwave Engineering, Reading, MA:Addison-Wesley, pp. 317, 1990.
14.
M.-Y. Li and K. Chang, "Novel low-cost beam-steering techniques using microstrip patch antenna arrays fed by dielectric image lines", IEEE Trans. Antenna Propagat., vol. 47, pp. 453-457, Mar. 1999.
15.
Marcel Dekker, New York, pp. 204-205, 1986.
16.
R. C. Hansen, Phased Array Antennas, New York:Wiley, pp. 14, 1998.
17.
D. H. Schaubert and J. Shin, "Parameter study of tapered slot antenna arrays", IEEE Int. Antennas and Propagat. Symp. Dig., pp. 1376-1379, 1995.
18.
D. H. Schaubert, "A class of E-plane scan blindnesses in single-polarized arrays of tapered-slot antennas with a ground plane", IEEE Trans. Antenna Propagat., vol. 44, pp. 954-959, July 1996.
19.
B. Bhat and S. K. Koul, "Unified approach to solve a class of strip and microstrip-like transmission lines", IEEE Trans. Microwave Theory Tech., vol. 30, pp. 679-686, May 1982.
20.
M. Kirschning and R. H. Jansen, "Accurate model for effective dielectric constant of microstrip with validity up to millimeter-wave frequencies", Electron. Lett., vol. 18, pp. 272-273, Mar. 1982.
21.
A. K. Verma and G. H. Sadr, "Unified dispersion model for multilayer microstrip line", IEEE Trans. Microwave Theory Tech., vol. 40, pp. 1587-1591, July 1992.
22.
R. J. Mailloux, Phased Array Antenna Handbook, Norwood:Artech House, pp. 27-29, p.45, 1994.

Contact IEEE to Subscribe

References

References is not available for this document.