Loading [MathJax]/extensions/MathZoom.js
Unified Models for Coupled Inductors Applied to Multiphase PWM Converters | IEEE Journals & Magazine | IEEE Xplore

Unified Models for Coupled Inductors Applied to Multiphase PWM Converters


Abstract:

Circuit models for multiphase coupled inductors are summarized, compared, and unified. Multiwinding magnetic structures are classified into parallel-coupled structures an...Show More

Abstract:

Circuit models for multiphase coupled inductors are summarized, compared, and unified. Multiwinding magnetic structures are classified into parallel-coupled structures and series-coupled structures. For parallel-coupled structures used for multiphase inductors, the relationships between: 1) inductance-matrix models, 2) extended cantilever models, 3) magnetic-circuit models, 4) multiwinding transformer models, 5) gyrator-capacitor models, and 6) inductance-dual models are examined and discussed. These models represent identical physical relationships in the multiphase coupled inductors, but emphasize different physical aspects and offer distinct design insights. The circuit duality between the series-coupled structure and the parallel-coupled structure is explored. Design equations for interleaved multiphase buck converters based on these models are streamlined and summarized, and a simplified equation showing the relationships between current ripple with and without coupling is presented. The models and design equations are verified through theoretical derivation, SPICE simulation, and experimental measurements.
Published in: IEEE Transactions on Power Electronics ( Volume: 36, Issue: 12, December 2021)
Page(s): 14155 - 14174
Date of Publication: 09 June 2021

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Multiphase coupled inductors are widely used in many power electronics applications [1]–[20]. Particularly in interleaved multiphase PWM converters, they can improve the efficiency, enhance the functionality, minimize the energy storage, reduce the passive component size, avoid saturation, and improve the transient response. Designing high-performance power converters with multiphase coupled inductors requires advanced models and tools.

Select All
1.
J. Li, C. R. Sullivan and A. Schultz, "Coupled inductor design optimization for fast-response low-voltage DC–DC converters", vol. 2, pp. 817-823, 2002.
2.
J. Li, A. Stratakos, C. R. Sullivan and A. Schultz, "Using coupled inductors to enhance transient performance of multi-phase buck converters", vol. 2, pp. 1289-1293, 2004.
3.
A. M. Schultz and C. R. Sullivan, "Voltage converter with coupled inductive windings and associated methods", U. S. Patent, vol. 6, Mar. 2002.
4.
T. Schmid and A. Ikriannikov, "Magnetically coupled buck converters", pp. 4948-4954, 2013.
5.
A. Ikriannikov, "The benefits of the coupled inductor technology" in , Maxim Integrated, San Jose, CA, USA, vol. 5997, 2014.
6.
W. Chen, "Low voltage high current power conversion with integrated magnetic", Apr. 1998.
7.
X. Zhou, P.-L Wong, P. Xu, F. C. Lee and A. Q. Huang, "Investigation of candidate VRM topologies for future microproceossrs", IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1172-1182, Nov. 2000.
8.
P.-L Wong, "Performance improment of multi-channel interleaving voltage regulator modules with integrated coupling inductors", Mar. 2001.
9.
P.-L Wong, P. Xu, P. Yang and F. C. Lee, "Performance improvements of interleaving VRMs with coupling inductors", IEEE Trans. Power Electron., vol. 16, no. 4, pp. 499-507, Jul. 2001.
10.
Y. Dong, "Investigation of multiphase coupled-inductor buck converters in point-of-load applications", 2009.
11.
A. V. Ledenev, G. G. Gurov and R. M. Porter, "Multiple power converter system using combining transformers", Apr. 2003.
12.
P. Zumel, O. Garcia, J. A. Cobos and J. Uceda, "Tight magnetic coupling in multiphase interleaved converters based on simple transformers", Proc. IEEE Appl. Power Electron. Conf., pp. 385-391, 2005.
13.
J. Czogalla, J. Li and C. R. Sullivan, "Automotive application of multi-phase coupled-inductor DC-DC converter", Proc. IAS Annu. Meeting Conf. Record Ind. Appl. Conf., vol. 3, pp. 1524-1529, 2003.
14.
E. Laboure, A. Cuniere, T. A. Meynard, F. Forest and E. Sarraute, "A theoretical approach to intercell transformers application to interleaved converters", IEEE Trans. Power Electron., vol. 23, no. 1, pp. 464-474, Jan. 2008.
15.
K. J. Hartnett, J. G. Hayes, M. G. Egan and M. S. Rylko, "CCTT-core split-winding integrated magnetic for high-power DC–DC converters", IEEE Trans. Power Electron., vol. 28, no. 11, pp. 4970-4984, Nov. 2013.
16.
M. Hirakawa, M. Nagano, Y. Watanabe, K. Andoh, S. Nakatomi and S. Hashino, "High power density DC/DC converter using the close-coupled inductors", pp. 1760-1767, 2009.
17.
D. Choi, S. Baek, Y. Cho, S. Yeo and H. Kim, "Design of coupled inductor considering saturation of core by leakage inductance for a 100 kW interleaved inverter", Proc. 10th Int. Conf. Power Electron., pp. 2814-2819, 2019.
18.
Y. Liu, M. Li, Y. Dou, Z. Ouyang and M. A. E. Andersen, "Investigation and optimization for planar coupled inductor dual-phase interleaved GaN-based totem-pole PFC", Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 1984-1990, 2020.
19.
S. Lu, C. Ding, Y. Mei, K. D. T. Ngo and G. Lu, "Hetero-magnetic coupled inductor (HMCI) for high frequency interleaved multiphase DC/DC converters", Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 2667-2672, 2019.
20.
D. O. Boillat and J. W. Kolar, "Modeling and experimental analysis of a coupling inductor employed in a high performance AC power source", Proc. Int. Conf. Renewable Energy Res. Appl., pp. 1-18, 2012.
21.
MIT and Staff, Magnetic Circuits and Transformers, Cambridge, MA, USA:MIT Press, 1943.
22.
J. G. Kassakian, M. F. Schlecht and G. C. Verghese, "Magnetic components", Principles of Power Electronics, 1991.
23.
P. T. Krein, "Concepts of magnetics for power electronics" in Elements of Power Electronics, New York, NY, USA:Oxford Univ. Press, vol. 126, 1998.
24.
R. W. Erickson and D. Maksimovic, "Basic magnetics theory", Fundamentals of Power Electronics, 2001.
25.
H. A. Haus and J. R. Melcher, "Introduction to electroquasistatics and magnetoquasistatics", Electromagnetic Fields and Energy, 1989.
26.
R. W. Erickson and D. Maksimovic, "A multiple-winding magnetics model having directly measurable parameters", Proc. 29th Annu. IEEE Power Electron. Special. Conf., vol. 2, pp. 1472-1478, 1998.
27.
S.-P Hu, R. D. Middlebrook and S. Cuk, "Transformer modeling and design for leakage control", Advances in Switched-Mode Power Conversion, vol. 2.
28.
Q. Chen, F. C. Lee, J. Z. Jiang and M. M. Jovanovic, "A new model for multiple-winding transformer", Proc. Power Electron. Specialist Conf., vol. 2, pp. 864-871, 1994.
29.
S. M. Sandler, "SPICE modeling of magnetic components" in Switch-Mode Power Supply Simulation: Designing with SPICE 3, New York, NY, USA: McGraw-Hill, 2006.
30.
E. R. Lwithwaite, "Magnetic equivalent circuits for electrical machines", Proc. Inst. Elect. Engineers, vol. 114, no. 11, pp. 1805-1809, 1967.

Contact IEEE to Subscribe

References

References is not available for this document.