Age of Information of SIC-Aided Massive IoT Networks With Random Access | IEEE Journals & Magazine | IEEE Xplore

Age of Information of SIC-Aided Massive IoT Networks With Random Access


Abstract:

Age of Information (AoI) has turned to be an outright metric to evaluate information freshness in Internet of Things (IoT) networks. In this work, we evaluate the average...Show More

Abstract:

Age of Information (AoI) has turned to be an outright metric to evaluate information freshness in Internet of Things (IoT) networks. In this work, we evaluate the average AoI of an uplink IoT monitoring network where multiple end devices have independent status updates to transmit to a common access point (AP). More specifically, we propose the so-called successive interference cancellation (SIC)-aided age-independent random access (AIRA-SIC) scheme, where the AP performs SIC aiming at recovering collisions of multiple packets that are transmitted simultaneously by different devices in a slotted ALOHA fashion. Our results show that the proposed scheme not only achieves considerably lower AoI levels than the standard AIRA but also outperforms a recently proposed threshold-based age-dependent random access (ADRA) scheme, where the channel access probability (CAP) of each device is dynamically adapted based on each devices’ AoI. Finally, we provide some insights on the optimal CAP that minimizes the network average AoI, as well on the influence of imperfect channel state information (CSI) in the performance of the proposed scheme.
Published in: IEEE Internet of Things Journal ( Volume: 9, Issue: 1, 01 January 2022)
Page(s): 662 - 670
Date of Publication: 27 May 2021

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

The Internet of Things (IoT) is playing an increasingly important role in connecting the physical world toward information and communication technology (ICT). In order for some distinct IoT services to be effective, timely communication is usually required, mainly in applications where control decisions are constantly extracted from data measurements [1].

Select All
1.
J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang and W. Zhao, "A survey on Internet of Things: Architecture enabling technologies security and privacy and applications", IEEE Internet Things J., vol. 4, no. 5, pp. 1125-1142, Oct. 2017.
2.
S. Kaul, R. Yates and M. Gruteser, "Real-time status: How often should one update?", Proc. IEEE INFOCOM, pp. 2731-2735, Mar. 2012.
3.
R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano and S. Ulukus, Age of information: An introduction and survey, 2020, [online] Available: https:\\www.arxiv.org/abs/2007.08564.
4.
R. D. Yates and S. K. Kaul, "Status updates over unreliable multiaccess channels", Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 331-335, 2017.
5.
H. H. Yang, C. Xu, X. Wang, D. Feng and T. Q. S. Quek, "Understanding age of information in large-scale wireless networks", IEEE Trans. Wireless Commun., vol. 20, no. 5, pp. 3196-3210, May 2021.
6.
R. D. Yates, "The age of information in networks: Moments distributions and sampling", IEEE Trans. Inf. Theory, vol. 66, no. 9, pp. 5712-5728, Sep. 2020.
7.
C. Xu, H. H. Yang, X. Wang and T. Q. S. Quek, "Optimizing information freshness in computing-enabled IoT networks", IEEE Internet Things J., vol. 7, no. 2, pp. 971-985, Feb. 2020.
8.
H. Chen, Y. Gu and S.-C. Liew, "Age-of-information dependent random access for massive IoT networks", Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), pp. 930-935, Jul. 2020.
9.
Z. Han, J. Liang, Y. Gu and H. Chen, "Software-defined radio implementation of age-of-information-oriented random access", Proc. 46th Annu. Conf. IEEE Ind. Electron. Soc., pp. 4374-4379, 2020.
10.
Y. Gu, H. Chen, Y. Zhou, Y. Li and B. Vucetic, "Timely status update in Internet of Things monitoring systems: An age-energy tradeoff", IEEE Internet Things J., vol. 6, no. 3, pp. 5324-5335, Jun. 2019.
11.
J. F. Grybosi, J. L. Rebelatto, G. L. Moritz and Y. Li, "Age-energy tradeoff of truncated ARQ retransmission with receiver diversity", IEEE Wireless Commun. Lett., vol. 9, no. 11, pp. 1961-1964, Nov. 2020.
12.
Y. Gao, B. Xia, K. Xiao, Z. Chen, X. Li and S. Zhang, "Theoretical analysis of the dynamic decode ordering SIC receiver for uplink NOMA systems", IEEE Commun. Lett., vol. 21, no. 10, pp. 2246-2249, Oct. 2017.
13.
S. A. Tegos, P. D. Diamantoulakis, A. S. Lioumpas, P. G. Sarigiannidis and G. K. Karagiannidis, "Slotted ALOHA With NOMA for the next generation IoT", IEEE Trans. Commun., vol. 68, no. 10, pp. 6289-6301, Oct. 2020.
14.
A. Maatouk, M. Assaad and A. Ephremides, "Minimizing the age of information: NOMA or OMA?", Proc. IEEE INFOCOM Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), pp. 102-108, 2019.
15.
Q. Wang, H. Chen, C. Zhao, Y. Li, P. Popovski and B. Vucetic, Optimizing information freshness via multiuser scheduling with adaptive NOMA/OMA, Jul. 2020, [online] Available: https:\\www.arxiv.org/abs/2007.04072.
16.
E. T. Ceran, D. Gündüz and A. György, "Average age of information with hybrid ARQ under a resource constraint", IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1900-1913, Mar. 2019.
17.
A. Goldsmith, Wireless Communications, New York, NY, USA:Cambridge Univ. Press, 2005.
18.
J. Wang, B. Xia, K. Xiao, Y. Gao and S. Ma, "Outage performance analysis for wireless non-orthogonal multiple access systems", IEEE Access, vol. 6, pp. 3611-3618, 2018.
19.
Z. Ding, R. Schober, P. Fan and H. V. Poor, "Simple semi-grant-free transmission strategies assisted by non-orthogonal multiple access", IEEE Trans. Commun., vol. 67, no. 6, pp. 4464-4478, Jun. 2019.
20.
Y. Yuan et al., NOMA for next-generation massive IoT: Performance potential and technology directions, 2021, [online] Available: http:\\www.arXiv:2104.04911.
21.
M. S. Ali, H. Tabassum and E. Hossain, "Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems", IEEE Access, vol. 4, pp. 6325-6343, 2016.
22.
N. Zhang, J. Wang, G. Kang and Y. Liu, "Uplink nonorthogonal multiple access in 5G systems", IEEE Commun. Lett., vol. 20, no. 3, pp. 458-461, Mar. 2016.
23.
J. Choi, "Re-transmission diversity multiple access based on SIC and HARQ-IR", IEEE Trans. Commun., vol. 64, no. 11, pp. 4695-4705, Nov. 2016.
24.
J. Choi, "NOMA-based random access with multichannel ALOHA", IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2736-2743, Dec. 2017.
25.
Z. Chen, Y. Liu, S. Khairy, L. X. Cai, Y. Cheng and R. Zhang, "Optimizing non-orthogonal multiple access in random access networks", Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring), pp. 1-5, 2020.
26.
Y. Gao, B. Xia, Y. Liu, Y. Yao, K. Xiao and G. Lu, "Analysis of the dynamic ordered decoding for uplink NOMA systems with imperfect CSI", IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 6647-6651, Jul. 2018.
27.
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.:Cambridge Univ. Press, 2004.
28.
M. Abramowitz, I. A. Stegun and R. H. Romer, "Handbook of mathematical functions with formulas graphs and mathematical tables", Amer. J. Phys., vol. 56, no. 10, pp. 958-958, Oct. 1988.
Contact IEEE to Subscribe

References

References is not available for this document.