Loading [MathJax]/extensions/MathMenu.js
Towards Complex and Continuous Manipulation: A Gesture Based Anthropomorphic Robotic Hand Design | IEEE Journals & Magazine | IEEE Xplore

Towards Complex and Continuous Manipulation: A Gesture Based Anthropomorphic Robotic Hand Design


Abstract:

Most current anthropomorphicrobotic hands can realize part of the human hand functions, particularly for object grasping. However, due to the complexity of the human hand...Show More

Abstract:

Most current anthropomorphicrobotic hands can realize part of the human hand functions, particularly for object grasping. However, due to the complexity of the human hand, few current designs target at daily object manipulations, even for simple actions like rotating a pen. To tackle this problem, we introduce a gesture based framework, which adopts the widely-used 33 grasping gestures of Feix as the bases for hand design and implementation of manipulation. In the proposed framework, we first measure the motion ranges of human fingers for each gesture, and based on the results, we propose a simple yet dexterous robotic hand design with 13 degrees of actuation. Furthermore, we adopt a frame interpolation based method, in which we consider the base gestures as the key frames to represent a manipulation task, and use the simple linear interpolation strategy to accomplish the manipulation. To demonstrate the effectiveness of our framework, we define a three-level benchmark, which includes not only 62 test gestures from previous research, but also multiple complex and continuous actions. Experimental results on this benchmark validate the dexterity of the proposed design and our video is available in https://drive.google.com/file/d/1wPtkd2P0zolYSBW7_3tVMUHrZEeXLXgD/view?usp=sharing.
Published in: IEEE Robotics and Automation Letters ( Volume: 6, Issue: 3, July 2021)
Page(s): 5461 - 5468
Date of Publication: 30 April 2021

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Artificial hands remain one of the hardest problems in robotics [1], [2], due to the lack of comprehensive understanding on the actuation and sensory systems of the human hand. Earlier studies [3]–[5] try to fully replicate functions of the human hand via complicated mechanical structures and actuation systems. Although these robotic hands have ranges of motion (ROM) and degrees of freedom (DOF) similar to those of human hands, or even have the ability to complete astounding manipulation tasks like solving a Rubik's cube [5], they are costly to fabricate and their dexterity can still be improved.

Select All
1.
C. Piazza, G. Grioli, M. Catalano and A. Bicchi, "A century of robotic hands", Ann. Rev. Control Robo. Auton. Syst., vol. 2, pp. 1-32, 2019.
2.
H. Liu et al., "Multisensory Five-Finger Dexterous Hand: The DLR/HIT Hand Ii" in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3692-3697, 2008.
3.
C. Lovchik and M. A. Diftler, "The robonaut hand: A dexterous robot hand for space", Proc. IEEE Int. Conf. Robot. Automat., vol. 2, pp. 907-912, 1999.
4.
F. Rothling, R. Haschke, J. J. Steil and H. Ritter, "Platform portable anthropomorphic grasping with the bielefeld 20-DOF shadow and 9-DOF TUM hand", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2951-2956, 2007.
5.
I. Akkaya et al., "Solving Rubiks cube with a robot hand" in , 2019.
6.
A. D. Deshpande et al., "Mechanisms of the anatomically correct testbed hand", IEEE/ASME Trans. Mechatronics, vol. 18, no. 1, pp. 238-250, Feb. 2013.
7.
Z. Xu and E. Todorov, "Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration", Proc. IEEE Int. Conf. Robot. Automat., pp. 3485-3492, 2016.
8.
A. A. M. Faudzi, J. Ooga, T. Goto, M. Takeichi and K. Suzumori, "Index finger of a human-like robotic hand using thin soft muscles", IEEE Robot. Automat. Lett., vol. 3, no. 1, pp. 92-99, Jan. 2018.
9.
B. J. Tasi, M. Koller and G. Cserey, "Design of the anatomically correct biomechatronic hand" in , 2019.
10.
T. Feix, J. Romero, H.-B. Schmiedmayer, A. M. Dollar and D. Kragic, "The grasp taxonomy of human grasp types", IEEE Trans. Human-Mach. Syst., vol. 46, no. 1, pp. 66-77, Feb. 2016.
11.
A. Kapandji, "Clinical Test of Apposition and Counter-Apposition of the Thumb" in Annales De Chirurgie De La Main: Organe Officiel Des Societes De Chirurgie De La Main, vol. 5, no. 1, pp. 67-73, 1986.
12.
D. Rus and M. T. Tolley, "Design fabrication and control of soft robots", Nature, vol. 521, no. 7553, pp. 467-475, 2015.
13.
R. Deimel and O. Brock, "A novel type of compliant and underactuated robotic hand for dexterous grasping", Int. J. Robot. Res., vol. 35, no. 1-3, pp. 161-185, 2016.
14.
P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood and C. J. Walsh, "Soft robotic glove for combined assistance and at-home rehabilitation", Robot. Auton. Syst., vol. 73, pp. 135-143, 2015.
15.
J. Zhou, J. Yi, X. Chen, Z. Liu and Z. Wang, "BCL-13: A. 13-DOF soft robotic hand for dexterous grasping and in-hand manipulation", IEEE Robot. Automat. Lett., vol. 3, no. 4, pp. 3379-3386, Oct. 2018.
16.
C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador and P. Dario, "Soft robot arm inspired by the octopus", Adv. Robot., vol. 26, no. 7, pp. 709-727, 2012.
17.
S. Kurumaya, H. Nabae, G. Endo and K. Suzumori, "Design of thin mckibben muscle and multifilament structure", Sensors Actuators A: Phys., vol. 261, pp. 66-74, 2017.
18.
R. S. Diteesawat, T. Helps, M. Taghavi and J. Rossiter, "Characteristic analysis and design optimization of bubble artificial muscles", Soft Robot., vol. 8, no. 2, pp. 186-199, 2021.
19.
A. J. Spiers, B. Calli and A. M. Dollar, "Variable-friction finger surfaces to enable within-hand manipulation via gripping and sliding", IEEE Robot. Automat. Lett., vol. 3, no. 4, pp. 4116-4123, Oct. 2018.
20.
J. Zhou et al., "A soft-robotic approach to anthropomorphic robotic hand dexterity", IEEE Access, vol. 7, pp. 101 483-101 495, 2019.
21.
Q. Lu and N. Rojas, "On soft fingertips for in-hand manipulation: Modeling and implications for robot hand design", IEEE Robot. Automat. Lett., vol. 4, no. 3, pp. 2471-2478, Jul. 2019.
22.
S. Abondance, C. B. Teeple and R. J. Wood, "A dexterous soft robotic hand for delicate in-hand manipulation", IEEE Robot. Automat. Lett., vol. 5, no. 4, pp. 5502-5509, Oct. 2020.
23.
L. Birglen, T. Laliberté and C. M. Gosselin, Underactuated Robotic Hands, Springer, vol. 40, pp. 1-5, 2007.
24.
C. Gosselin, F. Pelletier and T. Laliberte, "An anthropomorphic underactuated robotic hand with 15 DOFS and a single actuator", Proc. IEEE Int. Conf. Robot. Automat., pp. 749-754, 2008.
25.
A. G. Zisimatos, M. V. Liarokapis, C. I. Mavrogiannis and K. J. Kyriakopoulos, "Open-source affordable modular light-weight underactuated robot hands", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3207-3212, 2014.
26.
I. M. Bullock, R. R. Ma and A. M. Dollar, "A hand-centric classification of human and robot dexterous manipulation", IEEE Trans. Haptics, vol. 6, no. 2, pp. 129-144, Apr.-Jun. 2013.
27.
S. Takamuku, A. Fukuda and K. Hosoda, "Repetitive grasping with anthropomorphic skin-covered hand enables robust haptic recognition", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3212-3217, 2008.
28.
J. Zhou et al., "50 benchmarks for anthropomorphic hand function-based dexterity classification and kinematics-based hand design", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 9159-9165, 2020.
29.
J. K. Salisbury and J. J. Craig, "Articulated hands: Force control and kinematic issues", Int. J. Robot. Res., vol. 1, no. 1, pp. 4-17, 1982.
30.
J. Lin, Y. Wu and T. S. Huang, "Modeling the constraints of human hand motion", Proc. IEEE Workshop Human Motion, pp. 121-126, 2000.

Contact IEEE to Subscribe

References

References is not available for this document.