Loading web-font TeX/Math/Italic
Circulating Current Control for the Modular Multilevel Matrix Converter Based on Model Predictive Control | IEEE Journals & Magazine | IEEE Xplore

Circulating Current Control for the Modular Multilevel Matrix Converter Based on Model Predictive Control


Abstract:

In this work, a continuous-control-set model predictive control (CCS-MPC) strategy, with a saturation scheme for protection, is presented for regulating the circulating c...Show More

Abstract:

In this work, a continuous-control-set model predictive control (CCS-MPC) strategy, with a saturation scheme for protection, is presented for regulating the circulating currents of a modular multilevel matrix converter (M3C). The proposed approach is based on a state-space model of the M3C and allows protection and better utilization of the devices through a saturation scheme, which directly limits the arm currents and cluster output voltages by integrating the corresponding bounds as constraints of the CCS-MPC formulation. In order to solve the inherent optimization problem associated with the CCS-MPC, an active-set algorithm is implemented. Experimental and simulation results from a 27-cell M3C prototype validate the proposed strategy and illustrate the good performance achieved with the methodology presented in this work.
Page(s): 6069 - 6085
Date of Publication: 08 April 2021

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

The modular multilevel matrix converter (M3C) is an important power electronic topology that belongs to the modular multilevel converter (MMCs) family [1]–[5]. The M3C topology is composed of several full-bridge power cells (shown at the right-hand side of Fig. 1), which are grouped into nine power clusters. The series connection of a cluster with an inductance is referred to as an arm (shown at the left-hand side of Fig. 1). The M3C has been proposed as a prominent topology for low-speed high-torque drives since lower amplitude circulating currents are required compared to those utilized by other MMCs, particularly when an electrical machine is operating at low speed [6]–[8]. It has also been proposed for wind energy conversion systems (WECSs) based on permanent magnet synchronous machines [9], for improved fault ride-through control of doubly fed induction generators [10], and for low-frequency transmission systems [11]. As discussed in [12], in the future, it is highly possible that the M3C will replace the thyristor-based cycloconverters. An overview of M3C applications is presented in [13].

M3C.

Select All
1.
F. Kammerer, M. Gommeringer, J. Kolb and M. Braun, "Energy balancing of the modular multilevel matrix converter based on a new transformed arm power analysis", Proc. 16th Eur. Conf. Power Electron. Appl., pp. 1-10, Aug. 2014.
2.
W. Kawamura, M. Hagiwara and H. Akagi, "Control and experiment of a modular multilevel cascade converter based on triple-star bridge cells", IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3536-3548, Sep. 2014.
3.
F. Kammerer, J. Kolb and M. Braun, "Fully decoupled current control and energy balancing of the modular multilevel matrix converter", Proc. 15th Int. Power Electron. Motion Control Conf. (EPE/PEMC), pp. LS2a-3, Sep. 2012.
4.
M. A. Perez, S. Bernet, J. Rodriguez, S. Kouro and R. Lizana, "Circuit topologies modeling control schemes and applications of modular multilevel converters", IEEE Trans. Power Electron., vol. 30, no. 1, pp. 4-17, Jan. 2015.
5.
M. Diaz et al., "An overview of modelling techniques and control strategies for modular multilevel matrix converters", Energies, vol. 13, no. 18, pp. 4678, Sep. 2020.
6.
Y. Okazaki et al., "Experimental comparisons between modular multilevel DSCC inverters and TSBC converters for medium-voltage motor drives", IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1805-1817, Mar. 2017.
7.
W. Kawamura, K.-L. Chen, M. Hagiwara and H. Akagi, "A low-speed high-torque motor drive using a modular multilevel cascade converter based on triple-star bridge cells (MMCC-TSBC)", IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3965-3974, Sep. 2015.
8.
D. E. Soto-Sanchez, R. Pena, R. Cardenas, J. Clare and P. Wheeler, "A cascade multilevel frequency changing converter for high-power applications", IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2118-2130, Jun. 2013.
9.
M. Diaz et al., "Control of wind energy conversion systems based on the modular multilevel matrix converter", IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8799-8810, Nov. 2017.
10.
F. Kammerer, M. Gommeringer, J. Kolb and M. Braun, "Benefits of operating Doubly Fed Induction Generators by Modular Multilevel Matrix Converters", Proc. PCIM Eur. Conf., pp. 1149-1156, 2013, [online] Available: https://publikationen.bibliothek.kit.edu/1000036276.
11.
S. Liu, X. Wang, Y. Meng, P. Sun, H. Luo and B. Wang, "A decoupled control strategy of modular multilevel matrix converter for fractional frequency transmission system", IEEE Trans. Power Del., vol. 32, no. 4, pp. 2111-2121, Aug. 2017.
12.
H. Akagi, "Multilevel converters: Fundamental circuits and systems", Proc. IEEE, vol. 105, no. 11, pp. 2048-2065, Nov. 2017.
13.
M. Diaz et al., "An overview of applications of the modular multilevel matrix converter", Energies, vol. 13, no. 21, pp. 5546, Oct. 2020.
14.
A. Mora et al., "Model-predictive-control-based capacitor voltage balancing strategies for modular multilevel converters", IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2432-2443, Mar. 2019.
15.
M. Diaz et al., "Vector control of a modular multilevel matrix converter operating over the full output-frequency range", IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5102-5114, Jul. 2019.
16.
M. Urrutia, F. Donoso, A. Mora, E. Espina, M. Diaz and R. Cardenas, "Enhanced circulating-current control for the modular multilevel matrix converter based on model predictive control", Proc. 21st Eur. Conf. Power Electron. Appl. (EPE ECCE Europe), pp. 1-9, Sep. 2019.
17.
W. Kawamura, Y. Chiba, M. Hagiwara and H. Akagi, "Experimental verification of an electrical drive fed by a modular multilevel TSBC converter when the motor frequency gets closer or equal to the supply frequency", IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2297-2306, May 2017.
18.
A. Duran, E. Ibaceta, M. Diaz, F. Rojas, R. Cardenas and H. Chavez, "Control of a modular multilevel matrix converter for unified power flow controller applications", Energies, vol. 13, no. 4, pp. 953, Feb. 2020.
19.
R. Cárdenas, M. Díaz, F. Rojas, J. Clare and P. Wheeler, "Resonant control system for low-voltage ride-through in wind energy conversion systems", IET Power Electron., vol. 9, no. 6, pp. 1297-1305, May 2016.
20.
J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives, Hoboken, NJ, USA:Wiley, 2012.
21.
T. Geyer, Model Predictive Control of High Power Converters and Industrial Drives, Hoboken, NJ, USA:Wiley, 2016.
22.
S. Kouro, M. A. Perez, J. Rodriguez, A. M. Llor and H. A. Young, "Model predictive control: MPC’s role in the evolution of power electronics", IEEE Ind. Electron. Mag., vol. 9, no. 4, pp. 8-21, Dec. 2015.
23.
S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo and M. Norambuena, "Model predictive control for power converters and drives: Advances and trends", IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 935-947, Feb. 2017.
24.
A. Dekka, B. Wu, V. Yaramasu, R. L. Fuentes and N. R. Zargari, "Model predictive control of high-power modular multilevel converters—An overview", IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 1, pp. 168-183, Mar. 2019.
25.
A. Dekka, B. Wu, R. L. Fuentes, M. Perez and N. R. Zargari, "Evolution of topologies modeling control schemes and applications of modular multilevel converters", IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 4, pp. 1631-1656, Dec. 2017.
26.
A. Mora, M. Espinoza, M. Diaz and R. Cardenas, "Model predictive control of modular multilevel matrix converter", Proc. IEEE 24th Int. Symp. Ind. Electron. (ISIE), pp. 1074-1079, Jun. 2015.
27.
B. Fan, K. Wang, P. Wheeler, C. Gu and Y. Li, "An optimal full frequency control strategy for the modular multilevel matrix converter based on predictive control", IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6608-6621, Aug. 2018.
28.
M. Espinoza, R. Cardenas, M. Diaz and J. C. Clare, " An enhanced dq -based vector control system for modular multilevel converters feeding variable-speed drives ", IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2620-2630, Apr. 2017.
29.
D. Karwatzki and A. Mertens, "Generalized control approach for a class of modular multilevel converter topologies", IEEE Trans. Power Electron., vol. 33, no. 4, pp. 2888-2900, Apr. 2018.
30.
A. Potschka, C. Kirches, H. Bock and J. Schlöder, "Reliable solution of convex quadratic programs with parametric active set methods", 2010.

Contact IEEE to Subscribe

References

References is not available for this document.