The boom of connected Internet of Things (IoT) nodes and ubiquity of wireless communications are projected to increase wireless data traffic by several orders of magnitude in the near future. While these future scalable networks support increasing numbers of wireless devices utilizing the electromagnetic (EM) spectrum, ensuring the security of wireless communications and sensing is also a critical requirement. Wirelessly connected sensor nodes transmit and collect private and sensitive data, e.g., health-related or financial information, that must be communicated securely over the air. However, tight resource constraints, massive scale of connectivity, and new threat models targeting the physical layer make it challenging to address these security deficiencies only in software [1]–[4]. This work provides an overview of physical-layer threat models targeting these low-power wireless communication systems and surveys several hardware countermeasures for IoT devices operating in the radio-frequency (RF)-to-terahertz spectrum. To illustrate an example physical-layer attack surface analysis, we discuss two of these hardware solutions in detail: 1) protecting against a time- and modulation-based attack targeting selective jamming of low-power IoT communications and 2) another attack scenario exploiting authentication protocol weaknesses for disrupting the operation of an on-demand drug delivery system using an implantable medical device (IMD).
Abstract:
The boom of connected Internet of Things (IoT) nodes and ubiquity of wireless communications are projected to increase wireless data traffic by several orders of magnitud...Show MoreMetadata
Abstract:
The boom of connected Internet of Things (IoT) nodes and ubiquity of wireless communications are projected to increase wireless data traffic by several orders of magnitude in the near future. While these future scalable networks support increasing numbers of wireless devices utilizing the electromagnetic (EM) spectrum, ensuring the security of wireless communications and sensing is also a critical requirement. Wirelessly connected sensor nodes transmit and collect private and sensitive data, e.g., health-related or financial information, that must be communicated securely over the air.
Published in: IEEE Solid-State Circuits Magazine ( Volume: 12, Issue: 4, Fall 2020)
References is not available for this document.
Select All
1.
M. Alioto and S. Taneja, "Enabling ubiquitous hardware security via energy-efficient primitives and systems", Proc. 2019 IEEE Custom Integrated Circuits Conf. (CICC), pp. 1-8.
2.
M. Alioto, "Trends in hardware security: From basics to ASICs", IEEE Solid State Circuits Mag., vol. 11, no. 3, pp. 56-74, 2019.
3.
I. Verbauwhede, J. Balasch, S. S. Roy and A. Van Herrewege, "24.1 Circuit challenges from cryptography", Proc. 2015 IEEE Int. Solid-State Circuits Conf. - (ISSCC) Dig. Tech., pp. 1-2.
4.
K. Yang, M. Hicks, Q. Dong, T. Austin and D. Sylvester, "A2: Analog malicious hardware", Proc. 2016 IEEE Symp. Secur. Privacy (SP), pp. 18-37.
5.
Y. Shiu, S. Y. Chang, H. Wu, S. C. Huang and H. Chen, "Physical layer security in wireless networks: A tutorial", IEEE Wireless Commun., vol. 18, no. 2, pp. 66-74, Apr. 2011.
6.
R. T. Yazicigil, P. Nadeau, D. Richman, C. Juvekar, K. Vaidya and A. P. Chandrakasan, "Ultra-fast bit-level frequency-hopping transmitter for securing low-power wireless devices", Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), pp. 176-179, June 2018.
7.
P. Nadeau, R. T. Yazicigil and A. P. Chandrakasan, "Single-BAW multi-channel transmitter with low power and fast start-up time", Proc. 43rd IEEE Eur. Solid State Circuits Conf. (ESSCIRC), pp. 195-198, Sept. 2017.
8.
R. Pickholtz, D. Schilling and L. Milstein, "Theory of spread-spectrum communications: A tutorial", IEEE Trans. Commun., vol. 30, no. 5, pp. 855-884, May 1982.
9.
E. A. Vittoz, M. G. R. Degrauwe and S. Bitz, "High-performance crystal oscillator circuits: Theory and application", IEEE J. Solid-State Circuits, vol. 23, no. 3, pp. 774-783, June 1988.
10.
Y. Liu et al., "A 1.9nJ/b 2.4GHz multistandard (Bluetooth Low Energy/Zigbee/IEEE802.15.6) transceiver for personal/body-area networks", Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 446-447, Feb. 2013.
11.
Y. Kwon, S. Park, T. Park, K. Cho and H. Lee, "An ultra low-power CMOS transceiver using various low-power techniques for LR-WPAN applications", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 59, no. 2, pp. 324-336, Feb. 2012.
12.
F. Pengg, D. Barras, M. Kucera, N. Scolari and A. Vouilloz, "A low power miniaturized 1.95mm2 fully integrated transceiver with fastPLL mode for IEEE 802.15.4/bluetooth smart and proprietary 2.4GHz applications", Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), pp. 71-74, June 2013.
13.
Y. Liu et al., "A 3.7mW-RX 4.4mW-TX fully integrated Bluetooth Low-Energy/IEEE802.15.4/proprietary SoC with an ADPLL-based fast frequency offset compensation in 40nm CMOS", Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 1-3, Feb. 2015.
14.
D. Griffith, J. Murdock and P. T. Rine, "5.9 A 24MHz crystal oscillator with robust fast start-up using dithered injection", Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 104-105, Jan. 2016.
15.
S. Iguchi, H. Fuketa, T. Sakurai and M. Takamiya, "92% start-up time reduction by variation-tolerant chirp injection (CI) and negative resistance booster (NRB) in 39MHz crystal oscillator", Proc. Symp. VLSI Circuits Dig. Tech. Papers, pp. 1-2, June 2014.
16.
Y. Chang, J. Leete, Z. Zhou, M. Vadipour, Y. Chang and H. Darabi, "A differential digitally controlled crystal oscillator with a 14-bit tuning resolution and sine wave outputs for cellular applications", IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 421-434, Feb. 2012.
17.
M. Ding et al., " 5.3 A 95 n W 24MHz digitally controlled crystal oscillator for IoT applications with 36nJ start-up energy and >13× start-up time reduction using a fully-autonomous dynamically-adjusted load ", Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 90-91, Feb. 2017.
18.
R. Thirunarayanan, D. Ruffieux and C. Enz, "Reducing energy dissipation in ULP systems: PLL-Free FBAR-based fast startup transmitters", IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1110-1117, Apr. 2015.
19.
Y. H. Chee, A. M. Niknejad and J. Rabaey, "A sub-100/spl mu/W 1.9-GHz CMOS oscillator using FBAR resonator", Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), pp. 123-126, June 2005.
20.
A. Nelson, J. Hu, J. Kaitila, R. Ruby and B. Otis, " A 22 n W 2.0GHz FBAR oscillator ", Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), pp. 1-4, June 2011.
21.
S. S. Rai and B. P. Otis, " A 600 n W BAW-tuned quadrature VCO using source degenerated coupling ", IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 300-305, Jan. 2008.
22.
D. Ruffieux et al., "A narrowband multi-channel 2.4 GHz MEMS-based transceiver", IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 228-239, Jan. 2009.
23.
A. Paidimarri, P. M. Nadeau, P. P. Mercier and A. P. Chandrakasan, "A 2.4 GHz multi-channel FBAR-based transmitter with an integrated pulse-shaping power amplifier", IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1042-1054, Apr. 2013.
24.
M. Zhang, A. Raghunathan and N. K. Jha, "Trustworthiness of medical devices and body area networks", Proc. IEEE, vol. 102, no. 8, pp. 1174-1188, 2014.
25.
S. Maji et al., "A low-power dual-factor authentication unit for secure implantable devices", Proc. 2020 IEEE Custom Integr. Circuits Conf. (CICC), pp. 1-4.
26.
N. Desai, C. Juvekar, S. Chandak and A. P. Chandrakasan, "An actively detuned wireless power receiver with public key cryptographic authentication and dynamic power allocation", IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 236-246, 2018.
27.
Y. Xing, E. W. M. Ma, K. L. Tsui and M. Pecht, "Battery management systems in electric and hybrid vehicles", Energies, vol. 4, no. 11, pp. 1840-1857, 2011.
28.
K. Dietz, "Battery authentication for portable power supplies", Power Electron. Technol., vol. 32, no. 4, pp. 34-39, 2006.
29.
R. Want, "An introduction to RFID technology", IEEE Pervasive Comput., vol. 5, no. 1, pp. 25-33, 2006.
30.
T. K. Mackey and B. A. Liang, "The global counterfeit drug trade: Patient safety and public health risks", J. Pharmaceut. Sci., vol. 100, no. 11, pp. 4571-4579, 2011.