Loading [MathJax]/jax/output/HTML-CSS/autoload/mtable.js
Parameterized linear matrix inequality techniques in fuzzy control system design | IEEE Journals & Magazine | IEEE Xplore

Parameterized linear matrix inequality techniques in fuzzy control system design


Abstract:

This paper proposes different parameterized linear matrix inequality (PLMI) characterizations for fuzzy control systems. These PLMI characterizations are, in turn, relaxe...Show More

Abstract:

This paper proposes different parameterized linear matrix inequality (PLMI) characterizations for fuzzy control systems. These PLMI characterizations are, in turn, relaxed into pure LMI programs, which provides tractable and effective techniques for the design of suboptimal fuzzy control systems. The advantages of the proposed methods over earlier ones are then discussed and illustrated through numerical examples and simulations.
Published in: IEEE Transactions on Fuzzy Systems ( Volume: 9, Issue: 2, April 2001)
Page(s): 324 - 332
Date of Publication: 30 April 2001

ISSN Information:

References is not available for this document.

I. Introduction

The well-known Tagaki-Sugeno (T-S) fuzzy model [13] is a convenient and flexible tool for handling complex nonlinear systems [11], where its consequent parts are linear systems connected by IF-THEN rules. Suppose that is the state vector with dimension is the control input with dimension , and are the disturbance and controlled output of the system with the same dimension , and denotes the number of IF-THEN rules, where each th plant rule has the form \begin{align*} & \mathrm{IF}{\quad}z_{1}(t)\,\text{is}\,N_{i1}\,\text{and}\ldots z_{p}(t)\,\text{is}\,N_{ip}\\ & \mathrm{THEN}{\quad}\begin{bmatrix}\dot{x}\\ z\end{bmatrix}=\begin{bmatrix}A_{i} & B_{1i} & B_{2i}\\ C_{i} & D_{11i} & D_{12i}\end{bmatrix}\begin{bmatrix}x\\ w\\ u\end{bmatrix}.\tag{1} \end{align*}

Select All
1.
P. Apkarian and P. Gahinet, " A convex characterization of gain-sched-uled H ∞ controllers ", IEEE Trans. Automat. Contr., vol. 40, no. 1681, pp. 853-864, 1995.
2.
P. Apkarian and R. J. Adams, "Advanced gain-scheduling techniques for uncertain systems", IEEE Trans. Contr. Syst. Technol., vol. 6, pp. 21-32, 1997.
3.
P. Apkarian and H. D. Tuan, "Parameterized LMIs in control theory", SIAM J. Contr. Optimizat., vol. 38, pp. 1241-1264, 2000.
4.
A. Ben-Tal and and A. Nemirovski, "Robust convex optimization", Math. Operat. Res., vol. 23, pp. 769-805, 1998.
5.
A. Ben-Tal and and A. Nemirovski, "Robust solution of uncertain linear programs", Oper. Res. Lett., vol. 25, pp. 1-12, 1999.
6.
J. Bernussou, P. L. D. Peres and J. C. Geromel, "A linear programming oriented procedure for quadratic stabilization of uncertain sys-tems", Syst. Contr. Lett., vol. 13, pp. 65-72, 1989.
7.
S. Boyd, L. EI Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, Philadelphia:SIAM, 1994.
8.
R. T. Bupp, D. S. Bernstein and V. T. Coppola, "A benchmark problem for nonlinear control design", Int. J. Nonlin. Robust Contr., vol. 8, pp. 307-310, 1998.
9.
P. Gahinet and P. Apkarian, Int. J. Nonlin. Robust Contr., vol. 4, pp. 421-448, 1994.
10.
P. Gahinet, A. Nemirovski, A. Laub and M. Chilali, LMI Control Toolbox: The Math. Works Inc., 1994.
11.
Fuzzy Systems: Modeling and Control, Boston, MA:Kluwer Academic, 1998.
12.
A. Packard, "Gain scheduling via linear fractional transformations", Syst. Contr. Lett., vol. 22, pp. 79-92, 1994.
13.
T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control", IEEE Trans. Syst. Man Cybern., vol. 15, pp. 116-132, 1985.
14.
K. Tanaka, T. Ikeda and H. O. Wang, "Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs", IEEE Trans. Fuzzy Syst., vol. 6, pp. 250-265, 1998.
15.
K. Tanaka, T. Taniguchi and H. o. Wang, "Fuzzy control based on quadratic performance function: A linear matrix inequality approach", Proc. 37th CDC, pp. 2914-2919, 1998.
16.
M. C. M. Teixeira and S. H. Zak, "Stabilizing controller design for uncertain nonlinear systems using fuzzy models", IEEE Trans. Fuzzy Syst., vol. 7, pp. 133-142, 1999.
17.
H. D. Tuan and P. Apkarian, "Relaxations of parameterized LMIs with control applications", Int. J. Nonlin. Robust Contr., vol. 9, pp. 59-84, 1999.

Contact IEEE to Subscribe

References

References is not available for this document.