Introduction
As a type of stochastic systems, Markov jump systems (MJSs) have been widely adopted in various fields, such as networked systems, manufacturing systems, fault diagnosis [1]–[7]. With the rapid development of communication technique, the integration of traditional control systems and communication network has attracted much attention of researchers. In recent years, various problems of networked MJSs have been reported in [8]–[11] and the references therein. Note that these results are obtained based on a hypothesis that the communication resources like node energy and network bandwidth are adequate. However, communication resources in practical systems are usually constrained by the limited ability and cost of equipments.
Since the advantage of saving limited communication resources, event-triggered scheme (ETS) become an effective manner to reduce communication cost without losing much system performance [12]–[16]. By using event-triggered scheme, many outcomes of MJSs about robust control [17], quantized control [18] and finite-time control [19] have been reported. Specially, [17] studies the robust event-triggered control problem of discrete-time uncertain MJSs with nonlinear input. To decrease the waste of network resources, both event-triggered mechanism and input quantization are considered to investigate the issue of guaranteed cost finite-time control of semi-MJSs in [18]. In [19], the finite-time event-triggered
On the other hand, the triggered data transmitted over the network is highly possible to face the threaten of cyber-attacks, which may cause system performance deduction even instability [23]–[27]. Although the dedicated protocols for network is able to defend the attacks from external attackers to some extent [28], it is difficult to ensure the complete protection against cyber-attacks. Thus, the security issues have been researched from the perspective of control theory. In [29], a centralized security-guaranteed filter is investigated for stochastic systems subject to cyber-attacks. The problem of event-triggered output control of networked systems with state observer and denial-of-service attacks is developed in [30], in which cyber-attacks can block the transmitted data in communication channels. In [31], the resilient load frequency control issue of multiarea power systems under deception attacks is addressed based on an event-triggered communication scheme. In [32], a memory ETS is used to save network resources and a resilient event-triggered controller is designed for networked systems with randomly occurring deception attacks. An event-based security control issue of discrete-time stochastic systems subject to denial-of-service attacks and deception attacks is studied in [33]. For MJSs, a finite-time sliding-mode control issue is addressed in [34], where the intruders can inject false data into the communication signals. Reference [35] studies the static output feedback asynchronous control of MJSs with deception attacks. Note that the event-triggered communication scheme and the trade-off between communication cost and system performance for MJSs are not considered in [34], [35]. Moreover, to cope with the static output feedback controller, an inequality technique is used in [35], which could result in some design conservativeness. Thus, how to design the event-triggered static output controller for MJSs with deception attacks and obtain the trade-off between communication cost and system performance needs further investigation.
Inspired by the above discussions, this article studies the co-design issue of event-triggered scheme and
To handle the nonlinearity induced by static output feedback control, a constructive separation strategy is utilized to remove the coupling among controller gain and system matrices. Compared with some existing methods, some constraints like equality constraint [36], rank constraints [37] or inequality technique [35] are not required any more.
A novel co-design algorithm is proposed to derive the trade-off between the communication cost and
performance. In contrast to the method in [22], an extra step of computing the data packet transmission ratio is removed, which means that our proposed trade-off algorithm is simpler to be executed.H_{\infty }
Notation: In this paper, the notation
Preliminaries
Consider the following continuous MJS:\begin{equation*} \begin{cases} \dot {x}(t)=A(r_{t})x(t)+B_{1}(r_{t})u(t)+B_{2}(r_{t})\omega (t) \\ z(t)=C_{1}(r_{t})x(t)+D(r_{t})\omega (t)\\ y(t)=C_{2}(r_{t})x(t) \end{cases}\tag{1}\end{equation*}
\begin{equation*} Pr\{r_{t+\Delta }=j|r_{t}=i\}= \begin{cases} \lambda _{ij}\Delta +o(\Delta),&i\neq j\\ 1+\lambda _{ii}\Delta +o(\Delta),&i=j, \end{cases}\tag{2}\end{equation*}
\begin{equation*} \Lambda =\left [{ \begin{matrix} \lambda _{11}&\quad \lambda _{12}&\quad \cdots &\quad \lambda _{1s}\\ \lambda _{21}&\quad \lambda _{22}&\quad \cdots &\quad \lambda _{2s}\\ \vdots \\ \lambda _{s1}&\quad \lambda _{s2}&\quad \cdots &\quad \lambda _{ss}~\end{matrix} }\right].\tag{3}\end{equation*}
For
The decision on sampled data \begin{align*}&\hspace {-.5pc}t_{k+1}h=t_{k}h+\min _{l}\{lh|e^{T}(i_{k}h)\Phi _{i} e(i_{k}h) \\&\qquad\qquad\qquad\qquad\qquad\qquad\quad\! \displaystyle {\geq \delta _{i} y^{T}(t_{k}h) \Phi _{i} y(t_{k}h), \}} \tag{4}\end{align*}
It is assumed that no data packet loss occurs during the data transmission and the sum of communication delay, computation delay, and waiting delay is expressed as \begin{equation*} \hat {y}(t)=y(t_{k}h), t\in \Omega _{l}\triangleq [t_{k}h+\tau _{t_{k}}, t_{k+1}h+\tau _{t_{k}+1}).\tag{5}\end{equation*}
\begin{equation*} \hat {y}(t)=y(t-\tau (t))-e(i_{k}h),\hspace {4mm} t\in \Omega _{l}.\tag{6}\end{equation*}
In this paper, the deception attack is assumed can be modelled by a Bernoulli variable,
Assumption 1:
The deception attack function \begin{equation*} (f(x)-L_{1}x)^{T}(f(x)-L_{2}x)\leq 0,\tag{7}\end{equation*}
The proposed controller law is given as \begin{align*}&\hspace {-.5pc}u_{a}(t)= (1-\theta (t))(K_{i}y(t-\tau (t))-K_{i}e(i_{k}h)) \\&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad \displaystyle {+\,\theta (t)K_{i}f(\hat y(t)),} \tag{8}\end{align*}
Remark 1:
The data transmitted over the communication network is highly possible to be attacked by external hackers. Randomly occurring deception attacks may affect the system performance. In this paper, the stochastic process of deception attacks is modelled by a random variable
Combing (1) and (8), for \begin{equation*} \begin{cases} \dot {x}(t)=A_{i}x(t)+(1-\theta (t))\Big (B_{1i}K_{i}C_{2i}x(t-\tau (t))\\ - B_{1i}K_{i}e(i_{k}h)\Big)+\theta (t)B_{1i}K_{i}f(\hat y(t)) +B_{2i}\omega (t) \\ z(t)=C_{1i}x(t)+D_{i}\omega (t) \end{cases}\tag{9}\end{equation*}
The objective of this paper is to design the controller in (8) with the event-triggered scheme (4) such that system (9) is stochastically stable with the required
Some definitions and technical lemmas are introduced to help to achieve the above objective.
Definition 1:
[2] The system (1) with \begin{equation*} \mathbb {E}\left \{{\int ^{\infty }_{0}\|x(t)\|^{2}|x_{0},r_{0} }\right \} < \infty\tag{10}\end{equation*}
Definition 2:
[3] Given a scalar \begin{equation*} \mathbb {E}\left \{{\int _{0}^{\infty }z^{T}(t)z(t)dt}\right \} < \gamma ^{2}\mathbb {E}\left \{{\int _{0}^{\infty }\omega ^{T}(t)\omega (t)dt}\right \}\tag{11}\end{equation*}
Lemma 1:
[38]
Lemma 2:
[39]: For given \begin{equation*} \Im (\mu,R)=\cfrac {1}{\mu } \hspace {2mm}\vartheta ^{T}M_{1}^{T}RM_{1}\vartheta +\cfrac { 1}{1-\mu }\hspace {2mm}\vartheta ^{T}M_{2}^{T}RM_{2}\vartheta.\tag{12}\end{equation*}
\begin{equation*} \min _{\mu \in (0,1)}\Im (\mu,R)\geqslant \left [{ {\begin{array}{cccccccccccccccccccc} M_{1}\vartheta \\ M _{2}\vartheta \end{array}} }\right]^{T} \left [{ {\begin{array}{cccccccccccccccccccc} R &\quad X\\ * &\quad R\end{array}} }\right] \left [{ {\begin{array}{cccccccccccccccccccc} M_{1}\vartheta \\ M _{2}\vartheta \end{array}} }\right].\tag{13}\end{equation*}
Main Results
A. Stability Analysis and Control Synthesis
In this section, sufficient conditions for the required stability and performance are given in Theorem 1 and a unified event-triggered filter design method is proposed in Theorem 2.
Theorem 1:
For given parameters \begin{align*}&\hspace {-.5pc}\Pi _{i}+\Sigma _{i} < 0, \tag{14}\\&\qquad\qquad\qquad\qquad\qquad\qquad\qquad \displaystyle {\left [{ {\begin{array}{cccccccccccccccccccc} R &\quad X\\ * &\quad R\end{array}} }\right]>0,} \tag{15}\end{align*}
\begin{align*} \Pi _{i}=&\left [{ {\begin{array}{cccccccccccccccccccc} \Pi _{i}^{11} &~\Pi _{i}^{12} &~\Pi _{i}^{13} &~0 &~\Pi _{i}^{15} &~\Pi _{i}^{16} &~ \Pi _{i}^{17} &~0 \\ * &~\Pi _{i}^{22} &~\Pi _{i}^{23} &~0 &~\Pi _{i}^{25} &~\Pi _{i}^{26} &~\Pi _{i}^{27} &~C^{T}_{1i} \\ * &~* &~\Pi _{i}^{33} &~0 &~\Pi _{i}^{35} &~0 &~0 &~0 \\ * &~* &~* &\,\,-S &~0 &~0 &~0 &~0 \\ * &~* &~* &~* &~\Pi _{i}^{55} &~0 &~0 &~0 \\ * &~* &~* &~* &~* &~0 &~0 &~0 \\ * &~* &~* &~* &~* &~* &\,\,-\gamma ^{2}I &~D^{T}_{i}\\ * &~* &~* &~* &~* &~* &~* &\,\,-I \end{array}} }\right],\\ \Sigma _{i}=&-\Sigma _{1}-\rho \Sigma _{2i},\quad \Sigma _{2i}=\mathscr {E}^{T}_{2i} \mathfrak {F}\mathscr {E}_{2i},\\ \Sigma _{1}=&\mathscr E_{1}^{T} \begin{bmatrix} R &\quad X\\ * &\quad R \end{bmatrix} \mathscr E_{1},\quad \mathfrak {F}=\left [{ {\begin{array}{cccccccccccccccccccc} \mathfrak {F}_{1} &\quad \mathfrak {F}_{2}\\ \mathfrak {F}^{T}_{2} &\quad I\\ \end{array}} }\right],\\ \mathfrak {F}_{1}=&\cfrac {L^{T}_{1}L_{2}+L^{T}_{2}L_{1}}{2},\quad \mathfrak {F}_{2}=\cfrac {L_{1}+L_{2}}{2},\\ \mathscr {E}_{1}=&\left [{ {\begin{array}{cccccccccccccccccccc} 0 &\quad I &\quad -I &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 \\ 0 &\quad 0 &\quad I &\quad -I &\quad 0 &\quad 0 &\quad 0 &\quad 0 \end{array}} }\right],\\ \mathscr {E}_{2i}=&\begin{bmatrix}0 &\quad 0 &\quad C_{2i} &\quad 0 &\quad -I &\quad 0 &\quad 0 &\quad 0\\ 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad I &\quad 0 &\quad 0\end{bmatrix},\\ \Pi _{i}^{11}=&\tau ^{2}_{m}R-\mathrm He(G_{i}), \quad \Pi _{i}^{12}=P_{i}+G_{i}A_{i}-F^{T}_{i},\\ \Pi _{i}^{13}=&\theta _{2}G_{i} B_{1i}K_{i}C_{2i}, \quad \Pi _{i}^{15}=-\theta _{2}G_{i}B_{1i}K_{i},\\ \Pi _{i}^{16}=&\theta _{1}G_{i}B_{1i}K_{i}, \quad \Pi _{i}^{17}= G_{i}B_{2i},\\ \Pi _{i}^{23}=&\theta _{2}F_{i}B_{1i}K_{i}C_{2i}, \quad \Pi _{i}^{22}=\!S\!+\!\mathrm {He}(F_{i}A_{i})+\sum ^{s}_{j=1}\pi _{ij}P_{j},\\ \Pi _{i}^{25}=&-\theta _{2}F_{i}B_{1i}K_{i}, \quad \Pi _{i}^{26}= \theta _{1}F_{i}B_{1i}K_{i},\\ \Pi _{i}^{27}=&F_{i}B_{2i}, \quad \Pi _{i}^{33}= \delta _{i} C^{T}_{2i}\Phi _{i} C_{2i},\\ \Pi _{i}^{35}=&-\delta _{i}C^{T}_{2i}\Phi _{i}, \quad \Pi _{i}^{55}= (\delta _{i}-1)\Phi _{i}.\end{align*}
Proof:
Choose the Lyapunov-Krasovskii functional as below \begin{align*}&\hspace {-.5pc}V(t)=x^{T}(t) P_{i} x(t) + \int ^{t}_{t-\tau _{m}}x^{T}(v)Sx(v)dv \\&\qquad\qquad\qquad\qquad \displaystyle { +\,\tau _{m}\int ^{0}_{-\tau _{m}}\int ^{t}_{t+u}\dot {x}^{T}(v)R\dot {x}(v)dv du.} \tag{16}\end{align*}
Defining \begin{align*} \mathbb {E}\{ \varsigma V(t)\}=&2x^{T}(t) P_{i} \dot x(t)+x^{T}(t) \sum ^{s}_{j=1}\pi _{ij}P_{j} x(t) \\&+\,x^{T}(t)Sx(t)-x^{T}(t-\tau _{m})Sx(t-\tau _{m}) \\&+\,\tau ^{2}_{m}\dot { x}^{T}(t) R \dot {x}(t) -\tau _{m}\int ^{t}_{t-\tau _{m}}\dot {x}^{T}(v)R\dot {x}(v)dv.\tag{17}\end{align*}
Define the following augmented vector \begin{align*}&\hspace {-.5pc}\zeta (t)=\left [{ {\begin{array}{cccccccccccccccccccc} \dot {x}^{T}(t) &\quad x^{T}(t) &\quad x^{T}(t-\tau (t)) &\quad x^{T}(t-\tau _{m}) \end{array}} }\right.\\&\qquad\qquad\qquad\qquad \displaystyle {\left.{ {\begin{array}{cccccccccccccccccccc} e^{T}(i_{k}h) &\quad f^{T}(\hat y(t)) &\quad \omega ^{T}(t) &\quad z^{T}(t) \end{array}} }\right]^{T}.} \end{align*}
By adopting Jensen inequality and Lemma 2 to the integral terms in (17), it produces \begin{align*} -\tau _{m}\int ^{t}_{t-\tau _{m}}\dot {x}^{T}(v)R\dot {x}(v)dv \le -\zeta ^{T}(t)\mathscr {E}_{1}^{T} \left [{ {\begin{array}{cccccccccccccccccccc}R &\quad X\\ * &\quad R\end{array}} }\right]\mathscr {E}_{1}\zeta (t). \\\tag{18}\end{align*}
Combing (18) and (17), one has \begin{equation*} \mathbb {E}\{ \varsigma V(t)\}\leq \zeta ^{T}(t)\left ({\Psi _{i}-\mathscr {E}^{T}_{1} \left [{ {\begin{array}{cccccccccccccccccccc}R &\quad X\\ * &\quad R \end{array}} }\right] \mathscr {E}_{1} }\right)\zeta (t),\tag{19}\end{equation*}
\begin{align*} \Psi _{i}=&\left [{ {\begin{array}{cccccccccccccccccccc} \Psi ^{11}_{i} &\quad P_{i} &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 \\ * &\quad \Psi ^{22}_{i} &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 \\ * &\quad * &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 \\ * &\quad * &\quad * &\quad -S &\quad 0 &\quad 0 &\quad 0 &\quad 0 \\ * &\quad * &\quad * &\quad * &\quad 0 &\quad 0 &\quad 0 &\quad 0 \\ * &\quad * &\quad * &\quad * &\quad * &\quad 0 &\quad 0 &\quad 0 \\ * &\quad * &\quad * &\quad * &\quad * &\quad * &\quad 0 &\quad 0 \\ * &\quad * &\quad * &\quad * &\quad * &\quad * &\quad * &\quad 0 \\ \end{array}} }\right],\\ \Psi ^{11}_{i}=&\tau _{m}^{2}R,\quad \Psi ^{22}_{i}=S+\sum ^{s}_{j=1}\pi _{ij}P_{j}.\end{align*}
Considering the \begin{equation*} \mathbb {E}\Big \{\varsigma V(t) + z^{T}(t)z(t)-\gamma ^{2}w^{T}(t)w(t)\Big \} < 0.\tag{20}\end{equation*}
By adding and subtracting \begin{align*}&\hspace {-.5pc}\mathbb {E}\Big \{\varsigma V(t) + z^{T}(t)z(t)-\gamma ^{2}w^{T}(t)w(t) \\&\qquad\quad \displaystyle {+\,e^{T}(i_{k}h)\Phi _{i} e(i_{k}h)- e^{T}(i_{k}h)\Phi _{i} e(i_{k}h)\Big \} < 0.} \tag{21}\end{align*}
According to (4), at the triggering instant, \begin{equation*} e^{T}(i_{k}h)\Phi _{i} e(i_{k}h) \leq \delta _{i}y^{T}(t_{k}h)\Phi _{i} y(t_{k}h).\tag{22}\end{equation*}
\begin{align*}&\hspace {-.5pc}\mathbb {E}\Big \{\varsigma V(t) + z^{T}(t)z(t)-\gamma ^{2}w^{T}(t)w(t) \\&\qquad\; \displaystyle {+\,\delta _{i}y^{T}(t_{k}h)\Phi _{i} y(t_{k}h)- e^{T}(i_{k}h)\Phi _{i} e(i_{k}h)\Big \} < 0,} \tag{23}\end{align*}
\begin{equation*} \zeta ^{T}(t)\left ({\hat \Psi _{i}-\mathscr {E}^{T}_{1} \left [{ {\begin{array}{cccccccccccccccccccc}R &\quad X\\ * &\quad R \end{array}} }\right] \mathscr {E}_{1} }\right) \zeta (t) < 0,\tag{24}\end{equation*}
\begin{align*} \hat \Psi _{i}=&\left [{ {\begin{array}{cccccccccccccccccccc} \Psi _{i}^{11} &~P_{i} &~0 &~0 &~0 &~0 &~0 &~0 \\ * &~\Psi _{i}^{22} &~0 &~0 &~0 &~0 &~0 &~C^{T}_{1i} \\ * &~* &~\hat \Psi _{i}^{33} &~0 &\hat \Psi _{i}^{35} &~0 &~0 &~0 \\ * &~* &~* &\,\,-S &~0 &~0 &~0 &~0 \\ * &~* &~* &~* &~\hat \Psi _{i}^{55} &~0 &~0 &~0 \\ * &~* &~* &~* &~* &~0 &~0 &~0 \\ * &~* &~* &~* &~* &~* &\,\,-\gamma ^{2}I &~D_{i}^{T} \\ * &~* &~* &~* &~* &~* &~* &\,\,-I \end{array}} }\right],\\ \hat \Psi _{i}^{33}=&\delta _{i} C^{T}_{2i}\Phi _{i} C_{2i},~~\hat \Psi _{i}^{35}=-\delta _{i} C^{T}_{2i}\Phi _{i},~~\hat \Psi _{i}^{55}=(\delta _{i}-1) \Phi _{i}.\end{align*}
According to Assumption 1, the deception attacks are handled as \begin{equation*} \left [{ {\begin{array}{cccccccccccccccccccc} * \end{array}} }\right] \left [{ {\begin{array}{cccccccccccccccccccc} \mathfrak {F}_{1} & \quad \mathfrak {F}_{2}\\ \mathfrak {F}^{T}_{2} &\quad I\\ \end{array}} }\right] \left [{ {\begin{array}{cccccccccccccccccccc} y(t-\tau (t))-e(i_{k}h) \\ f(\hat y(t)) \end{array}} }\right] \leq 0,\tag{25}\end{equation*}
\begin{equation*} -\rho \zeta ^{T}(t) \mathscr {E}^{T}_{2i} \mathfrak {F}\mathscr {E}_{2i} \zeta (t)\geq 0,\tag{26}\end{equation*}
Based on (26) and S-procedure [38], (24) is further ensured by \begin{equation*} \zeta ^{T}(t)\left ({\hat \Psi _{i}-\mathscr {E}^{T}_{1} \left [{ {\begin{array}{cccccccccccccccccccc}R &\quad X\\ * &\quad R \end{array}} }\right] \mathscr {E}_{1}- \rho \mathscr {E}^{T}_{2i} \mathfrak {F}\mathscr {E}_{2i} }\right) \zeta (t) < 0.\tag{27}\end{equation*}
To be consistent with Lemma 1, we rewrite the closed-loop system (9) as \begin{equation*} \mathbb {E}\{\mathcal {H}_{i} \zeta (t)\}=\mathscr {H}_{i}\zeta (t)=0,\tag{28}\end{equation*}
\begin{align*} \mathcal {H}_{i}=&\left [{ {\begin{array}{cccccccccccccccccccc} -I &\quad A_{i} &\quad (1-\theta (t))B_{1i}K_{i}C_{2i} &\quad 0 \end{array}} }\right.\\&\qquad \left.{ {\begin{array}{cccccccccccccccccccc} -(1-\theta (t))B_{1i}K_{i} &\quad \theta (t)B_{1i}K_{i} &\quad B_{2i} &\quad 0 \end{array}} }\right],\\ \mathscr {H}_{i}=&\left [{ {\begin{array}{cccccccccccccccccccc} -I &\quad A_{i} & \quad \theta _{2}B_{1i}K_{i}C_{2i} &\quad 0 \end{array}} }\right.\\&\qquad {\left.{ {\begin{array}{cccccccccccccccccccc} -\theta _{2}B_{1i}K_{i} &\quad \theta _{1} B_{1i}K_{i} &\quad B_{2i} &\quad 0 \end{array}} }\right]}.\end{align*}
Applying Lemma 1 to (27) gives \begin{equation*} \zeta ^{T}(t)\left ({\hat \Psi _{i}+\Sigma _{i}+He\left ({\mathscr {M}_{i}\mathscr {H}_{i}}\right) }\right) \zeta (t) < 0,\tag{29}\end{equation*}
\begin{equation*} \mathscr {M}_{i}=\left [{ {\begin{array}{cccccccccccccccccccc} G^{T}_{i} &\quad F^{T}_{i} &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0\end{array}} }\right]^{T}.\end{equation*}
According to the given condition (14), (29) is ensured.
Then, integrating both sides of (23) over \begin{align*}&\hspace {-.5pc}\mathbb {E}\Bigg \{\int ^{\infty }_{0}\varsigma V(t)dt + \int ^{\infty }_{0}\left ({z^{T}(t)z(t) -\gamma ^{2} \omega ^{T}(t)\omega (t)}\right)dt \\& \displaystyle {+\, \int ^{\infty }_{0}\left ({{\delta _{i}}y^{T}(t_{k}h)\Phi _{i} y(t_{k}h)- e^{T}(i_{k}h)\Phi _{i} e(i_{k}h)}\right)dt\Bigg \} < 0.} \\\tag{30}\end{align*}
Based on \begin{align*}&\hspace {-1.2pc}\mathbb {E}\left \{{\int ^{\infty }_{0}z^{T}(t)z(t)dt}\right \}-\gamma ^{2}\mathbb {E}\left \{{\int ^{\infty }_{0}\omega ^{T}(t)\omega (t)dt}\right \} \\\leq&\mathbb {E}\Bigg \{ V(0)-V(\infty) \\&-\,\int ^{\infty }_{0}\left ({{\delta _{i}}y^{T}(t_{k}h)\Phi _{i} y(t_{k}h)- e^{T}(i_{k}h)\Phi _{i} e(i_{k}h)}\right)dt\Bigg \} < 0, \\\tag{31}\end{align*}
Remark 2:
To cope with the time-varying communication delay, a combination method of Jensen inequality and Lemma 2 is utilized, which is less conservative than the existing result [40] based on Jensen inequality. Moreover, with the help of some improved inequalities, such as Wirtinger inequality [41] and Bessel-Legendre inequality [42], the design conservativeness can further be reduced. When the improved inequalities are used, more variable matrices will be introduced and the size of obtained conditions in Theorem 1 will get larger, which could lead to higher computation and complexity.
Theorem 2:
For given parameters \begin{equation*} \Xi _{i}+\Theta _{i} < 0,\tag{32}\end{equation*}
\begin{align*} \Xi _{i} !=&\left [{\! {\begin{array}{cccccccccccccccccccc} \Xi _{i}^{11} &\, \Xi _{i}^{12} &\, \Xi _{i}^{13} &\, 0 &\, \Xi _{i}^{15} &\, \Xi _{i}^{16} &\, \Xi _{i}^{17} &\, 0 &\, \Xi _{i}^{19}\\ * &\, \Xi _{i}^{22} &\, \Xi _{i}^{23} &\, 0 &\Xi _{i}^{25} &\, \Xi _{i}^{26} &\, \Xi _{i}^{27} &\, C^{T}_{1i} &\, \Xi _{i}^{29} \\ * &\, * &\, \Xi _{i}^{33} &\, 0 &\Xi _{i}^{35} &\, 0 &\, 0 &\, 0 &\Xi _{i}^{39} \\ * &\, * &\, * &\, -S &\, 0 &\, 0 &\, 0 &\, 0 &\, 0 \\ * &\, * &\, * &\, * &\, \Xi _{i}^{55} &\, 0 &\, 0 &\, 0 &\, \Xi _{i}^{59}\\ * &\, * &\, * &\, * &\, * &\, 0 &\, 0 &\, 0 &\, 0\\ * &\, * &\, * &\, * &\, * &\, * &\, -\gamma ^{2}I &\, D^{T}_{i} &\, 0\\ * &\, * &\, * &\, * &\, * &\, * &\, * &\, -I &\, 0 \\ * &\, * &\, * &\, * &\, * &\, * &\, * &\, * &\, \Xi _{i}^{99} \end{array}} \!}\right],\\ \Theta _{i}=&-\Theta _{1}-\rho \Theta _{2i},~~\Theta _{1}= \hat {\mathscr {E}}_{1}^{T} \begin{bmatrix} R &\quad X\\ * &\quad R \end{bmatrix} \hat {\mathscr {E}}_{1}, \\ \Theta _{2i}=&\hat {\mathscr {E}}^{T}_{2i} \mathfrak {F}\hat {\mathscr {E}}_{2i},~~\hat {\mathscr {E}}_{1}=\left [{ {\begin{array}{cccccccccccccccccccc} \mathscr {E}_{1} &\quad 0 \end{array}} }\right],~\hat {\mathscr {E}}_{2i}=\left [{{\begin{array}{cccccccccccccccccccc}{\mathscr {E}}_{2i} &\quad 0 \end{array}} }\right],\\ \Xi _{i}^{22}=&S+He(F_{i}A_{i})+\sum ^{s}_{j=1}\pi _{ij}P_{j},\\ \Xi _{i}^{11}=&\tau ^{2}_{m}R-\mathrm {He}(G_{i}), \quad \Xi _{i}^{12}=P_{i}+G_{i}A_{i}-F_{i}^{T},\\ \Xi _{i}^{13}=&b_{1}\theta _{2}B_{1i}M_{i}C_{2i}, \quad \Xi _{i}^{15}=-b_{1}\theta _{2}B_{1i}M_{i},\\ \Xi _{i}^{16}=&b_{1}\theta _{1}B_{1i}M_{i}, \quad \Xi _{i}^{17}=G_{i}B_{2i},\\ \Xi _{i}^{19}=&G_{i}B_{1i}-b_{1}B_{1i}Z_{i}, \quad \Xi _{i}^{23}=b_{2}\theta _{2}B_{1i}M_{i}C_{2i},\\ \Xi _{i}^{25}=&-b_{2}\theta _{2}B_{1i}M_{i}, \quad \Xi _{i}^{26}=b_{2}\theta _{1}B_{1i}M_{i},\\ \Xi _{i}^{27}=&F_{i}B_{2i}, \quad \Xi _{i}^{29}=F_{i}B_{1i}-b_{2}B_{1i}Z_{i},\\ \Xi _{i}^{33}=&\delta _{i} C^{T}_{2i}\Phi _{i} C_{2i}, \quad \Xi _{i}^{35}=-\delta _{i} C^{T}_{2i}\Phi _{i},\\ \Xi _{i}^{39}=&-\mu (M_{i}C_{2i})^{T}, \quad \Xi _{i}^{55}=(\delta _{i}-1)\Phi _{i},\\ \Xi _{i}^{59}=&\mu M_{i}^{T}, \quad \Xi _{i}^{99}=-\mu He(Z_{i}).\\{}\end{align*}
Then, the controller gains are solved as
Proof:
The condition (14) in Theorem 1 is equivalent to \begin{equation*} {\mathscr {Y}_{i}^\perp }^{T}\left [{ {\begin{array}{cccccccccccccccccccc} \Pi _{i}+\Sigma _{i} &\quad 0 \\ * &\quad 0 \end{array}} }\right]\mathscr {Y}_{i}^\perp < 0\tag{33}\end{equation*}
\begin{align*} \mathscr {Y}_{i}^\perp=&\left [{ {\begin{array}{cccccccccccccccccccc} \mathscr {Y}^\perp _{1i} \\ \mathscr {Y}^\perp _{2i} \end{array}} }\right],~~\mathscr {Y}^\perp _{1i}=diag\{\underbrace {I,\cdots,I}_{8}\},\\ \mathscr {Y}^\perp _{2i}=&\left [{ {\begin{array}{cccccccccccccccccccc} 0 &\quad 0 &\quad \theta _{2}K_{i}C_{2i} &\quad 0 &\quad -\theta _{2}K_{i} &\quad \theta _{1}K_{i} &\quad 0 &\quad 0 \end{array}} }\right].\end{align*}
By applying Lemma 1 to (33), it yields \begin{equation*} \mathscr {P}_{i}+He(\mathscr {X}_{i}\mathscr {Y}_{i}) < 0\tag{34}\end{equation*}
\begin{align*} \mathscr {Y}_{i}=&\left [{ {\begin{array}{cccccccccccccccccccc} 0 &~0 &~\theta _{2}K_{i}C_{2i} &~ 0 &\,\,-\theta _{2}K_{i} &~\theta _{1}K_{i} &~0 &~0 &\,\,-I \end{array}} }\right],\\ \mathscr {X}_{i}=&\left [{ {\begin{array}{cccccccccccccccccccc} \mathscr {X}^{T}_{1i} &\mathscr {X}^{T}_{2i} &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad \mu Z^{T}_{i} \end{array}} }\right]^{T},\\ \mathscr {X}_{1i}=&b_{1}B_{1i}Z_{i}-G_{i}B_{1i},~\mathscr {X}_{2i}=b_{2}B_{1i}Z_{i}-F_{i}B_{1i}.\end{align*}
Remark 3:
To derive the static output feedback controller, some existing methods such as equality constraint, iterative algorithms and rank assumptions are usually needed. According to the separation approach based on Lemma 1, the coupling among the Lyapunov matrix
B. The Co-Design Issue
As discussed in [21], the packet transmission rate (
It is hard to achieve a maximum
Algorithm 1: Let \begin{align*}&\hspace {-.5pc}\min \psi ~~s.t.~~\sum ^{s}_{i=1}\alpha _{i}(1-\delta _{i}) + \alpha _{0}\gamma ^{2}-\psi < 0, \\&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\;\; \displaystyle {and\,\,\,\,(15),(32),} \tag{35}\end{align*}
Remark 4:
If we set
Algorithm 2: Define
Step 1. Set
Step 2. For given scalars
Step 3.
For
While
(i) Execute Algorithm 1. If it is feasible, set
(ii) Update
End
End
Step 4. Output
Remark 5:
In the existing results [21], [22], a packet transmission rate is used to represent the communication cost, and a co-design iterative algorithm is proposed to minimize both the
Remark 6:
Based on Algorithm 1 and 2, the trade-off between the communication cost and
Remark 7:
If the weighting matrix
Numerical Example
Example 1:
To illustrate the system security against deception attacks, the system parameters and deception attacks are considered as below:\begin{align*} A_{1}=&\left [{ {\begin{array}{cccccccccccccccccccc} -0.5 &\quad 0.1 \\ 0.2 &\quad 0.1 \end{array}} }\right],~B_{11}=\left [{ {\begin{array}{cccccccccccccccccccc} 1 \\ 2 \end{array}} }\right],~B_{21}=\left [{ {\begin{array}{cccccccccccccccccccc} 0.3 \\ 0 \end{array}} }\right],\\ C_{11}=&\left [{ {\begin{array}{cccccccccccccccccccc} 1 &\quad 1 \end{array}} }\right],~C_{21}=\left [{ {\begin{array}{cccccccccccccccccccc} 1 &\quad 2 \end{array}} }\right],~D_{1}=0.1,\\ A_{2}=&\left [{ {\begin{array}{cccccccccccccccccccc} -1 &\quad 0.2 \\ 0.1 &\quad -0.2 \end{array}} }\right],~B_{12}=\left [{ {\begin{array}{cccccccccccccccccccc} 1 \\ 2 \end{array}} }\right],~B_{22}=\left [{ {\begin{array}{cccccccccccccccccccc} 0 \\ 0.3 \end{array}} }\right],\\ C_{12}=&\left [{ {\begin{array}{cccccccccccccccccccc} 1 &\quad 1 \end{array}} }\right],~C_{22}=\left [{ {\begin{array}{cccccccccccccccccccc} 0.5 &\quad 2 \end{array}} }\right],~D_{2}=0.2.\end{align*}
Let \begin{align*} K_{1}=&-0.2124,~\Phi _{1}=1.7917,\\ K_{2}=&-0.2613,~\Phi _{2}=3.1129.\end{align*}
In the simulation, the zero initial condition
The curves of the state
The curves of the state
When the initial condition is selected as
The curves of the state
In addition, by choosing
From this table, one observes that the maximum allowable upper bound of communication delay
Example 2:
A signal-link robot arm system [43] is considered to illustrate the effectiveness of the proposed approach. The dynamics of the robot arm is governed by \begin{equation*} \ddot {\nu }(t)=-\frac {Mg\mathcal {L}}{\mathcal {J}}sin(\nu (t))-\frac {\mathcal {U}}{\mathcal {J}}\dot {\nu }(t) +\frac {u(t)}{\mathcal {J}}+\frac {\mathcal {L}}{\mathcal {J}}\omega (t),\tag{36}\end{equation*}
\begin{align*} \dot {x}(t)=\begin{bmatrix} 0 &\quad I \\ -g\mathcal {L} &\quad -\dfrac {\mathcal {U}}{\mathcal {J}_{i}} \end{bmatrix}x(t) +\begin{bmatrix} 0 \\ \dfrac {1}{\mathcal {J}_{i}} \end{bmatrix} u(t) +\begin{bmatrix} 0 \\ \dfrac {\mathcal {L}}{\mathcal {J}_{i}} \end{bmatrix} \omega (t), \\\tag{37}\end{align*}
The performance output matrices, system output matrices and the transition rate matrix are given as:\begin{align*} C_{11}=&C_{12}=\begin{bmatrix} 1 &\quad 1 \end{bmatrix},~~C_{21}=C_{22}=\begin{bmatrix} 0.1 &\quad 0.5 \end{bmatrix},\\ D_{1}=&D_{2}=0.2,~~\Lambda =\begin{bmatrix} -8 &\quad 8 \\ 5 &\quad -5 \end{bmatrix}.\end{align*}
Firstly, let
Secondly, Algorithm 2 is implemented to show the trade-off among the communication cost
Thirdly, the controller gains, triggering matrices and triggering thresholds under two cases are derived as:
Case 1 (\begin{align*} K_{1}=&-0.1291,~\Phi _{1}=1.4689,\\ K_{2}=&-0.5401,~\Phi _{2}=1.5063;\end{align*}
Case 2 (\begin{align*} K_{1}=&-0.1734,~\Phi _{1}=2.1506,\\ K_{2}=&-0.1394,~\Phi _{2}=2.1407.\end{align*}
The simulation results under the zero initial state and the disturbance
Conclusion
This paper has studied the event-triggered