Loading [MathJax]/extensions/MathZoom.js
FakeDetector: Effective Fake News Detection with Deep Diffusive Neural Network | IEEE Conference Publication | IEEE Xplore

FakeDetector: Effective Fake News Detection with Deep Diffusive Neural Network


Abstract:

In recent years, due to the booming development of online social networks, fake news for various commercial and political purposes has been appearing in large numbers and...Show More

Abstract:

In recent years, due to the booming development of online social networks, fake news for various commercial and political purposes has been appearing in large numbers and widespread in the online world. With deceptive words, online social network users can get infected by these online fake news easily, which has brought about tremendous effects on the offline society already. An important goal in improving the trustworthiness of information in online social networks is to identify the fake news timely. This paper aims at investigating the principles, methodologies and algorithms for detecting fake news articles, creators and subjects from online social networks and evaluating the corresponding performance. This paper addresses the challenges introduced by the unknown characteristics of fake news and diverse connections among news articles, creators and subjects. This paper introduces a novel gated graph neural network, namely FAKEDETECTOR. Based on a set of explicit and latent features extracted from the textual information, FAKEDETECTOR builds a deep diffusive network model to learn the representations of news articles, creators and subjects simultaneously. Extensive experiments have been done on a real-world fake news dataset to compare FAKEDETECTOR with several state-of-the-art models, and the experimental results are provided in the full-version of this paper at [13].
Date of Conference: 20-24 April 2020
Date Added to IEEE Xplore: 27 May 2020
ISBN Information:

ISSN Information:

Conference Location: Dallas, TX, USA

I. Introduction

Fake news denotes a type of yellow press which intentionally presents misinformation or hoaxes spreading through both traditional print news media and recent online social media [11]. Fake news has been existing for a long time, since the "Great moon hoax" published in 1835 [1]. In recent years, due to the booming developments of online social networks, fake news for various commercial and political purposes has been appearing in large numbers and widespread in the online world. With deceptive words, online social network users can get infected by these online fake news easily, which has brought about tremendous effects on the offline society already. During the 2016 US president election, various kinds of fake news about the candidates widely spread in the online social networks, which may have a significant effect on the election results. According to a post-election statistical report [3], online social networks account for more than 41.8% of the fake news data traffic in the election, which is much greater than the data traffic shares of both traditional TV/radio/print medium and online search engines respectively. An important goal in improving the trustworthiness of information in online social networks is to identify the fake news timely, which will be the main task studied in this paper.

Contact IEEE to Subscribe

References

References is not available for this document.