Loading [MathJax]/extensions/MathMenu.js
PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud | IEEE Conference Publication | IEEE Xplore

PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud


Abstract:

In this paper, we propose PointRCNN for 3D object detection from raw point cloud. The whole framework is composed of two stages: stage-1 for the bottom-up 3D proposal gen...Show More

Abstract:

In this paper, we propose PointRCNN for 3D object detection from raw point cloud. The whole framework is composed of two stages: stage-1 for the bottom-up 3D proposal generation and stage-2 for refining proposals in the canonical coordinates to obtain the final detection results. Instead of generating proposals from RGB image or projecting point cloud to bird's view or voxels as previous methods do, our stage-1 sub-network directly generates a small number of high-quality 3D proposals from point cloud in a bottom-up manner via segmenting the point cloud of the whole scene into foreground points and background. The stage-2 sub-network transforms the pooled points of each proposal to canonical coordinates to learn better local spatial features, which is combined with global semantic features of each point learned in stage-1 for accurate box refinement and confidence prediction. Extensive experiments on the 3D detection benchmark of KITTI dataset show that our proposed architecture outperforms state-of-the-art methods with remarkable margins by using only point cloud as input. The code is available at https://github.com/sshaoshuai/PointRCNN.
Date of Conference: 15-20 June 2019
Date Added to IEEE Xplore: 09 January 2020
ISBN Information:

ISSN Information:

Conference Location: Long Beach, CA, USA

1. Introduction

Deep learning has achieved remarkable progress on 2D computer vision tasks, including object detection [8], [32], [16] and instance segmentation [6], [10], [20], etc. Beyond 2D scene understanding, 3D object detection is crucial and indispensable for many real-world applications, such as autonomous driving and domestic robots. While recent developed 2D detection algorithms are capable of handling large variations of viewpoints and background clutters in images, the detection of 3D objects with point clouds still faces great challenges from the irregular data format and large search space of 6 Degrees-of-Freedom (DoF) of 3D object.

Contact IEEE to Subscribe

References

References is not available for this document.