Bounding Box Regression With Uncertainty for Accurate Object Detection | IEEE Conference Publication | IEEE Xplore

Bounding Box Regression With Uncertainty for Accurate Object Detection


Abstract:

Large-scale object detection datasets (e.g., MS-COCO) try to define the ground truth bounding boxes as clear as possible. However, we observe that ambiguities are still i...Show More

Abstract:

Large-scale object detection datasets (e.g., MS-COCO) try to define the ground truth bounding boxes as clear as possible. However, we observe that ambiguities are still introduced when labeling the bounding boxes. In this paper, we propose a novel bounding box regression loss for learning bounding box transformation and localization variance together. Our loss greatly improves the localization accuracies of various architectures with nearly no additional computation. The learned localization variance allows us to merge neighboring bounding boxes during non-maximum suppression (NMS), which further improves the localization performance. On MS-COCO, we boost the Average Precision (AP) of VGG-16 Faster R-CNN from 23.6% to 29.1%. More importantly, for ResNet-50-FPN Mask R-CNN, our method improves the AP and AP90 by 1.8% and 6.2% respectively, which significantly outperforms previous state-of-the-art bounding box refinement methods. Our code and models are available at github.com/yihui-he/KL-Loss.
Date of Conference: 15-20 June 2019
Date Added to IEEE Xplore: 09 January 2020
ISBN Information:

ISSN Information:

Conference Location: Long Beach, CA, USA

Contact IEEE to Subscribe

References

References is not available for this document.