1. Introduction
Anomaly detection is an essential problem in video surveillance. Due to the massive amount of available video data from surveillance cameras, it is time-consuming and inefficient to have human observers watching surveillance videos and report any anomalies. Ideally, we want an automatic system that can report abnormal events. Anomaly detection is challenging since the definition of “anomaly” is broad and ambiguous - anything that deviates expected behaviours can be considered as “anomaly”. It is infeasible to collect labeled training data that cover all possible anomalies. As a result, recent work in anomaly detection has focused on unsupervised approaches that do not require human labels.