Energy Efficient Switching Technique for High-Speed Electro-Optical Semiconductor Optical Amplifiers | IEEE Journals & Magazine | IEEE Xplore

Energy Efficient Switching Technique for High-Speed Electro-Optical Semiconductor Optical Amplifiers


Abstract:

The analysis and performance of an efficient microwave coupler using asymmetrical impedance matching are introduced aiming high-speed electro-optical space switches emplo...Show More

Abstract:

The analysis and performance of an efficient microwave coupler using asymmetrical impedance matching are introduced aiming high-speed electro-optical space switches employing a semiconductor optical amplifier (SOA). Through the reduction of the step matching resistor, its parasitic, and the optimization of the injected electrical switching signals, the proposed coupler was able to significantly reduce the SOA energy consumption while maintaining its ultrafast state transition with reduced transient behavior. Overall, the SOA-based switching action achieved guard times below 500 ps with overshoots close to 0% while operating with low bias currents and short pre-impulses, with a driver power close to 135 mW and energy consumption of 3.4 pJ/bit.
Published in: Journal of Lightwave Technology ( Volume: 37, Issue: 24, 15 December 2019)
Page(s): 6015 - 6024
Date of Publication: 02 October 2019

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

The incessant increase of the digital data amount and bit rates in optical networks requires continuous development of new scientific paradigms and technological solutions. Regarding the Semiconductor Optical Amplifier (SOA), a new ultra-wideband device already achieved transmission over [1]. As Data Centers (DCs) act as hubs to process and redirect the global data streaming [2], their operation requires switching optical packages with highly scalable architectures [3], increasingly higher commutation rates [4], lower latencies [5], higher spectral flexibility [6], and, prominently, lower energy consumption (EC) [7]. The importance of the EC reduction derives from the huge energy spent in DCs, motivating the research and development of Green Photonics [8], [9] to reduce the environmental impact of the global optical networks.

Select All
1.
J. Renaudier, "100 nm ultra-wideband optical fiber transmission systems using semiconductor optical amplifiers", Proc. Eur. Conf. Opt. Commun., pp. 1-3, Sep. 2018.
2.
T. Benson, A. Anand, A. Akella and M. Zhang, "Understanding data center traffic characteristics", SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 92-99, Jan. 2010.
3.
Q. Cheng, M. Bahadori, S. Rumley and K. Bergman, "Highly-scalable low-crosstalk architecture for ring-based optical space switch fabrics", Proc. IEEE Opt. Interconnects Conf., pp. 41-42, Jun. 2017.
4.
R. C. Figueiredo, T. Sutili, N. S. Ribeiro, C. M. Gallep and E. Conforti, "Semiconductor optical amplifier space switch with symmetrical thin-film resistive current injection", IEEE/OSA J. Lightw. Technol., vol. 35, no. 2, pp. 280-287, Jan. 2017.
5.
Y. Yin, R. Proietti, X. Ye, C. J. Nitta, V. Akella and S. J. B. Yoo, "LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers", IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, Mar. 2013.
6.
Y. Hong, X. Hong, J. Chen and S. He, "Elastic all-optical multi-hop interconnection in data centers with adaptive spectrum allocation", Opt. Commun., vol. 383, pp. 478-484, 2017.
7.
D. Suvakovic et al., "A low-energy rate-adaptive bit-interleaved passive optical network", IEEE J. Sel. Areas Commun., vol. 32, no. 8, pp. 1552-1565, Aug. 2014.
8.
P. Sharma, P. Pegus, D. Irwin, P. Shenoy, J. Goodhue and J. Culbert, "Design and operational analysis of a green data center", IEEE Internet Comput., vol. 21, no. 4, pp. 16-24, 2017.
9.
M. O. I. Musa, T. E. H. El-Gorashi and J. M. H. Elmirghani, "Bounds on GreenTouch GreenMeter network energy efficiency", J. Lightw. Technol., vol. 36, no. 23, pp. 5395-5405, Dec. 2018.
10.
C. M. Gallep and E. Conforti, "Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique", IEEE Photon. Technol. Lett., vol. 14, no. 7, pp. 902-904, Jul. 2002.
11.
R. C. Figueiredo, N. S. Ribeiro, A. M. O. Ribeiro, C. M. Gallep and E. Conforti, "Hundred-picoseconds electro-optical switching with semiconductor optical amplifiers using multi-impulse step injection current", IEEE/OSA J. Lightw. Technol., vol. 33, no. 1, pp. 69-77, Jan. 2015.
12.
N. S. Ribeiro, A. L. Toazza, C. M. Gallep and E. Conforti, "Rise time and gain fluctuations of an electrooptical amplified switch based on multipulse injection in semiconductor optical amplifiers", IEEE Photon. Technol. Lett., vol. 21, no. 12, pp. 769-771, Jun. 2009.
13.
T. Sutili, B. Taglietti, R. C. Figueiredo, C. M. Gallep and E. Conforti, "Guard time requirements for SOA-based electro-optical space switches and AM signals", Proc. SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf., pp. 1-5, 2017.
14.
E. F. Burmeister et al., "Photonic integrated circuit optical buffer for packet-switched networks", Opt. Express, vol. 17, no. 8, pp. 6629-6635, Apr. 2009.
15.
K. A. Williams et al., "Integrated optical 2 × 2 switch for wavelength multiplexed interconnects", IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 78-85, Jan. 2005.
16.
P. S. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross and J. B. Khurgin, "Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz", IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 918-920, Mar. 2004.
17.
N. S. Ribeiro, A. L. R. Cavacalcante, C. M. Gallep and E. Conforti, "Optical amplitude modulation extinction by a deep saturated ultra-long semiconductor optical amplifier", Opt. Express, vol. 18, no. 26, pp. 27 298-27 305, Dec. 2010.
18.
C. M. Gallep and E. Conforti, "Simulations on picosecond non-linear electro-optic switching using an ASE-calibrated semiconductor optical amplifier model", Opt. Commun., vol. 236, no. 1, pp. 131-139, 2004.
19.
X. Ma and G.-S. Kuo, "Optical switching technology comparison: Optical MEMS vs. other technologies", IEEE Commun. Mag., vol. 41, no. 11, pp. S16-S23, Nov. 2003.
20.
Q. Guo and A. V. Tran, "Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization", IEEE Photon. Technol. Lett., vol. 24, no. 11, pp. 951-953, Jun. 2012.
21.
C. Caillaud et al., "Integrated SOA-PIN detector for high-speed short reach applications", IEEE/OSA J. Lightw. Technol., vol. 33, no. 8, pp. 1596-1601, Apr. 2015.
22.
Z. Huang, T. Cao, L. Chen, Y. Yu and X. Zhang, "Monolithic integrated chip with SOA and tunable DI for multichannel all-optical signal processing", IEEE Photon. J., vol. 10, no. 2, Apr. 2018.
23.
J. Renaudier et al., "First 100-nm continuous-band WDM transmission system with 115 Tb/s transport over 100 km using novel ultra-wideband semiconductor optical amplifiers", Proc. 43rd Eur. Conf. Opt. Commun., vol. 1, pp. 1-3, Sep. 2017.
24.
X. Zheng, O. Raz, N. Calabretta, D. Zhao, R. Lu and Y. Liu, "Multiport InP monolithically integrated all-optical wavelength router", OSA Opt. Lett., vol. 41, no. 16, pp. 3892-3895, Aug. 2016.
25.
P. Vorreau et al., "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters", IEEE Photon. Technol. Lett., vol. 18, no. 18, pp. 1970-1972, Sep. 2006.
26.
B. Taglietti, T. Sutili, R. C. Figueiredo, R. Ferrari and E. Conforti, "Semiconductor optical amplifier space switch BER improvement and guard-time reduction through feed-forward filtering", Opt. Commun., vol. 426, pp. 295-301, Nov. 2018.
27.
D. H. Auston, "Picosecond optoelectronic switching and gating in silicon", Appl. Phys. Lett., vol. 26, no. 3, pp. 101-103, 1975.
28.
T. Sutili and E. Conforti, "Optical modulator half-wave voltage measurement using opposite-phase sine waves", J. Lightw. Technol., vol. 34, no. 9, pp. 2152-2157, May 2016.
29.
P. Dong et al., "Low Vpp ultralow-energy compact high-speed silicon electro-optic modulator", Opt. Express, vol. 17, no. 25, pp. 22 484-22 490, Dec. 2009.
30.
M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young and A. L. Lentine, "Vertical junction silicon microdisk modulators and switches", Opt. Express, vol. 19, no. 22, pp. 21 989-22 003, Oct. 2011.

Contact IEEE to Subscribe

References

References is not available for this document.