Loading [MathJax]/extensions/MathZoom.js
Design of Ultra-Wideband Yb:Er:Tm:Ho Co-Doped Germanate Glass Devices | IEEE Conference Publication | IEEE Xplore

Design of Ultra-Wideband Yb:Er:Tm:Ho Co-Doped Germanate Glass Devices


Abstract:

An Yb:Er:Tm:Ho co-doped germanate glass is considered to develop an exhaustive mathematical model of a 980-nm-pumped fiber laser enabling high efficient, multi-wavelength...Show More

Abstract:

An Yb:Er:Tm:Ho co-doped germanate glass is considered to develop an exhaustive mathematical model of a 980-nm-pumped fiber laser enabling high efficient, multi-wavelength emission at 1550 nm, 1800 nm and 2050 nm. The model is based on the nonlinear rate equations and takes into account the different energy transfer phenomena between the rare earths. Several simulations are performed and the behavior of the device is investigated with respect to the laser cavity parameters, i.e. fiber length and output mirrors reflectivities. By employing an input pump power of 0.5 W, a fiber length of 30 cm and output mirrors reflectivities of 92%, 60% and 20%, three different laser signals with output powers of 36.9 mW, 39.4 mW and 35 mW at 1550 nm, 1800 nm and 2050 nm, respectively, are obtained. This simulation result promises optical sources allowing almost the same emission power at the three different wavelengths and/or a flat wideband amplification.
Date of Conference: 09-13 July 2019
Date Added to IEEE Xplore: 19 September 2019
ISBN Information:

ISSN Information:

Conference Location: Angers, France
References is not available for this document.

1. INTRODUCTION

The development of novel active devices based on broadband amplified spontaneous emission (ASE), broadband signal amplification and multi-wavelength laser emission in the wavelength range λ = 1.5 – 2.2 µm constitutes a hot topic for the recent research. In fact, the availability of novel active devices at these wavelengths promise several applications including medicine diagnostic and therapy, microscopy, laser radar for remote sensing, earth and atmosphere monitoring and novel communications optical systems [1]–[13]. The ASE and/or lasing at these wavelengths have been obtained in a variety of glasses, among which the silicate, fluorophosphate, tellurite, chalcogenide, antimony and germanate glasses. Low phonon germanium-based glass allows high rare-earth-ion solubility, if compared with chalcogenide glass, and high physicochemical stability, if compared with fluoride glass. Another strength point is the spectral transmittance, extended up to 5 – 6 µm wavelength, and the quite low probability of non-radiative relaxation [1]–[3]. Unfortunately, the high number of spectroscopic parameters, pertaining to each rare earth ion transition and to the energy transfer phenomena among the different rare earth ions, makes the optimization of the rare earth doped optical glasses and devices not trivial. In particular, the multiple rare earth doped glass design is further complicated because the energy transfer phenomena nonlinearly depend on the dopant concentration levels and the ion population levels.

Select All
1.
M. Kochanowicz, J. Zmojda, P. Miluski, A. Baranowska, M. Leich, A. Schwuchow, et al., " Tm 3+ /Ho 3+ co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 µm ", Opt. Mater. Express, vol. 9, pp. 1450-1458, Mar. 2019.
2.
M. Kochanowicz, J. Zmojda, P. Miluski, M. Sitarz, J. Pisarska, W. A. Pisarski, et al., " Analysis of upconversion luminescence in germanate glass and optical fiber co-doped with Yb 3+ /Tb 3+ ", Appl. Opt, vol. 55, pp. 2370-2374, Mar. 2016.
3.
M. Kochanowicz, J. Zmojda, P. Miluski, D. Mazur, A. Baranowska, M. Soltys, et al., "1.5-2.1 μm broadband ASE in rare-earth co-doped glasses and double-clad optical fibers", Proc. 20th International Conference on Transparent Optical Networks (ICTON), pp. Mo.C6.2, Jul. 2018.
4.
A. Hemming, S. Jackson, A. Sabella, S. Bennetts and D. Lancaster, " High power narrow bandwidth and broadly tunable Tm 3+ Ho 3+ -co-doped aluminosilicate glass fibre laser ", Electron. Lett, vol. 46, pp. 1617-1618, Nov. 2010.
5.
Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu and J. Zhang, " 2 μm emission of Ho 3+ -doped fluorophosphate glass sensitized by Yb 3+ ", Opt. Mater, vol. 32, pp. 1508-1513, Sep. 2010.
6.
S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya and A. V. Huffaker, "Eye-safe coherent laser radar system at 2.1 µm using TmHo:YAG lasers", Opt. Lett, vol. 16, pp. 773-775, May 1991.
7.
M. Eichhorn, "Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions", Appl. Phys. B, vol. 93, pp. 269-316, Nov. 2008.
8.
J. Zmojda, M. Kochanowicz, P. Miluski, J. Dorosz, J. Pisarska, W. A. Pisarski, et al., " Investigation of upconversion luminescence in antimonygermanate double-clad two cores optical fiber co-doped with Yb 3+ /Tm 3+ and Yb 3+ /Ho 3+ ions ", J. Lumin, vol. 170, pp. 795-800, Feb. 2016.
9.
J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Ferrari and D. Dorosz, " Investigation of upconversion luminescence in Yb 3+ /Tm 3+ /Ho 3+ triply doped antimony-germanate glass and double-clad optical fiber ", Opt. Mater, vol. 58, pp. 279-284, Aug. 2016.
10.
T. Ragin, J. Zmojda, M. Kochanowicz, P. Miluski, P. Jelen, M. Sitarz, et al., " Enhanced mid-infrared 2.7 µm luminescence in low hydroxide bismuth-germanate glass and optical fiber co-doped with Er 3+ /Yb 3+ ions ", J. Non-Cryst. Solids, vol. 457, pp. 169-174, Feb. 2017.
11.
M. Kochanowicz, J. Zmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, et al., " Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb 3+ /Ho 3+ ", J. Alloys Compd, vol. 727, pp. 1221-1226, Dec. 2017.
12.
F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, et al., " Visible to NIR downconversion process in Tb 3+ -Yb 3+ co-doped silica-hafnia glass and glass-ceramic sol-gel waveguides for solar cells ", J. Lumin, vol. 193, pp. 44-50, Jan. 2018.
13.
A. Albalawi, M. Kochanowicz, J. Zmojda, P. Miluski, D. Dorosz and S. Taccheo, "Fluorescence spectrum of an Yb:Er:Tm:Ho doped germanate glass", Laser Congress 2018 (ASSL) OSA Technical Digest, pp. ATu2A.4, Nov. 2018.
14.
M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, et al., " Design of an efficient pumping scheme for mid-IR Dy 3+ :Ga 5 Ge 20 Sb 10 S 65 PCF fiber laser ", IEEE Photon. Technol. Lett, vol. 28, pp. 1984-1987, Sep. 2016.
15.
M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, et al., "Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission", J. Lightw. Technol, vol. 35, pp. 265-273, Jan. 2017.
16.
G. Palma, M. C. Falconi, F. Starecki, V. Nazabal, J. Ari, L. Bodiou, et al., "Design of praseodymium-doped chalcogenide micro-disk emitting at 4.7 µm", Opt. Express, vol. 25, pp. 7014-7030, Mar. 2017.
17.
M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano and F. Prudenzano, " Design of an efficient pulsed Dy 3+ :ZBLAN fiber laser operating in gain switching regime ", J. Lightw. Technol, vol. 36, pp. 5327-5333, Dec. 2018.
18.
H. Tilanka Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V, et al., "Lead-germanate glasses and fibers: A practical alternative to tellurite for nonlinear fiber applications", Opt. Mater. Express, vol. 3, pp. 1488-1503, Sep. 2013.
19.
G. Palma, M. C. Falconi, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, et al., "Modeling of whispering gallery modes for rare earth spectroscopic characterization", IEEE Photon. Technol. Lett, vol. 27, pp. 1861-1863, Sep. 2015.
20.
G. Palma, M. C. Falconi, F. Starecki, V. Nazabal, T. Yano, T. Kishi, et al., "Novel double step approach for optical sensing via microsphere WGM resonance", Opt. Express, vol. 24, pp. 26956-26971, Nov. 2016.
21.
D. Laneve, M. C. Falconi, M. Bozzetti, G. Rutigliani, R. A. Prisco, V. Dimiccoli, et al., "Electromagnetic design of microwave cavities for side-coupled linear accelerators: A hybrid numerical/analytical approach", IEEE Trans. Nucl. Sci, vol. 65, pp. 2233-2239, Aug. 2018.
Contact IEEE to Subscribe

References

References is not available for this document.