I. Introduction
Different from conventional cameras, plenoptic cameras can capture 4D spatial and angular information of light field via a single shot by inserting a micro lens array between the main lens and image sensor [1–4]. The 4D data can be used in depth estimation, view synthesis and saliency detection [5–7], etc. Image formation analysis is investigated in [8–12] to reconstruct the light field of the object, which can further benefit these applications. The formation of image and its corresponding PSF is given by \begin{equation*}i(x, y)=\displaystyle \int_{-\infty}^{+\infty}\int i_{\mathrm{o}}(x_{o},\ y_{0})h(x, y,x_{o},\ y_{0})dx_{o}dy_{0}, \tag{1}\end{equation*} where and are the spatial coordinates at the object plane and sensor plane, respectively; and are the original light field information of the object and image data, respectively; is the impulse response of the corresponding plenoptic system, i.e. the PSF. Transforming this integration into discrete matrix form, the model in (1) is given as \begin{equation*}[I]=[\mathrm{H}][\mathrm{I}_{\mathrm{o}}], \tag{2}\end{equation*} where I and are the column vectors which contain all the and , respectively; H is the PSF matrix that contains all the . The detailed arrangement is formulated as \begin{equation*}\left[ \begin{array} { c } { i ^ { 1,1 } } \\ { i ^ { 1,2 } } \\ { \vdots } \\ { i ^ { M , N - 1 } } \\ { i ^ { M , N } } \end{array} \right] = \left[ \begin{array} { c c c c c } { h _ { 1,1 } ^ { 1,1 } } & { h _ { 1,2 } ^ { 1,1 } } & { h _ { 1,3 } ^ { 1,1 } } & { \dots } & { h _ { M , N } ^ { 1,1 } } \\ { h _ { 1,1 } ^ { 1,2 } } & { h _ { 1,2 } ^ { 1,2 } } & { h _ { 1,3 } ^ { 1,2 } } & { \dots } & { h _ { M , N } ^ { 1,2 } } \\ { h _ { 1,3 } ^ { 1,3 } } & { h _ { 1,2 } ^ { 1,3 } } & { h _ { 1,3 } ^ { 1,3 } } & { \dots } & { h _ { M , N } ^ { 1,3 } } \\ { \vdots } & { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { h _ { 1,1 } ^ { M , N } } & { h _ { 1,2 } ^ { M , N } } & { h _ { 1,3 } ^ { M , N } } & { \cdots } & { h _ { M , N } ^ { M , N } } \\ { h _ { 1,1 } ^ { M , N } } & { h _ { 1,2 } ^ { M , N } } & { h _ { 1,3 } ^ { M , N } } & { \cdots } & { h _ { M , N } ^ { M , N } } \end{array} \right] \left[ \begin{array} { c } { i _ { o , 1,1 } } \\ { i _ { o , 1,2 } } \\ { \vdots } \\ { i _ { o , M , N - 1 } } \\ { i _ { o , M , N } } \end{array} \right] \tag{3}\end{equation*} where MN is the spatial resolution of the image data on the sensor. The PSF is verified to be spatial varying theoretically, which indicates that the PSF matrix, H, is dense and large in scale [17]. To be specific, for a light filed image in size of 32803280, the size of its PSF matrix is (32803280)(32803280), which occupies almost 926TB memory storage space. It is surely too huge to be handled and becomes an obstacle for reconstructing light field of the object.