Abstract:
The authors present a polarization reflectance model that uses the Fresnel reflection coefficients. This reflectance model accurately predicts the magnitudes of polarizat...Show MoreMetadata
First Page of the Article

Abstract:
The authors present a polarization reflectance model that uses the Fresnel reflection coefficients. This reflectance model accurately predicts the magnitudes of polarization components of reflected light, and all the polarization-based methods presented follow from this model. The authors demonstrate the capability of polarization-based methods to segment material surfaces according to varying levels of relative electrical conductivity, in particular distinguishing dielectrics, which are nonconducting, and metals, which are highly conductive. Polarization-based methods can provide cues for distinguishing different intensity-edge types arising from intrinsic light-dark or color variations, intensity edges caused by specularities, and intensity edges caused by occluding contours where the viewing direction becomes nearly orthogonal to surface normals. Analysis of reflected polarization components is also shown to enable the separation of diffuse and specular components of reflection, unobscuring intrinsic surface detail saturated by specular glare. Polarization-based methods used for constraining surface normals are discussed.<>
Published in: IEEE Transactions on Pattern Analysis and Machine Intelligence ( Volume: 13, Issue: 7, July 1991)
DOI: 10.1109/34.85655
First Page of the Article

References is not available for this document.
Select All
1.
E. Bahar, "Review of the full wave solutions for rough surface scattering and depolarization: Comparisons with geometric and physical optics perturbation and two-scale hybrid solutions", J. Geophysical Research, vol. 92, no. C5, pp. 5209-5224, May 1987.
2.
P. Beckmann, The Depolarization of Electromagnetic Waves, Golem Press, 1968.
3.
P. Beckmann and A. spizzichino, The Scattering of Electromagnetic Waves from Rough surfaces, New York:Macmillan, 1963.
4.
M. Born and E. Wolf, Principles of Optics, New York:Pergamon, 1959.
5.
T. E. Boult and L. B. Wolff, "Physically based edge labeling", Proc. IEEE Conf. Comput. Vision and Pattern Recognition (CVPR), 1991-June.
6.
G. J. Brelstaff, Inferring surface shape from specular reflections, 1989.
7.
G. J. Brelstaff and A. Blake, "Detecting specular reflections using lambertian constraints", Proc. IEEE Second International Conf Comput. Vision (ICCV), pp. 297-302, 1988-Dec.
8.
D. Clarke and J. F. Grainger, Polarized Light and Optical Measurement, New York:Pergamon, 1971.
9.
R. Cook and K. Torrance, "A reflectance model for computer graphics", J. Comput. Graphics, vol. 15, pp. 307-316, 1981.
10.
K. Forbus, Light source effects, 1977.
11.
G. Healey, "Using color for geometry-insensitive segmentation", J. Opt. Society of America A, vol. 6, no. 6, pp. 920-937, June 1989.
12.
G. Healey and T. O. Binford, "Predicting material classes", Proc. DARPA Image Understanding Workshop, pp. 1140-1146, 1988-Apr.
13.
G. Healey and W. E. Blanz, "Identifying metal surfaces in color images", SPIE Proc. Optics Electro-Optics and Sensors, 1988-Apr.
14.
G. Healey and W. E. Blanz, Personal Communication.
15.
B. K. P. Horn, "Obtaining shape from shading information", Psych. Comput. Vision, pp. 115-155, 1975.
16.
K. Ikeuchi, "Determining surface orientations of specular surfaces by using the photometric stereo method", IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-3, no. 6, pp. 661-669, Nov. 1981.
17.
S. K. Nayar, K. Ikeuchi and T. Kanade, Extracting shape and flectance of Lambertian specular and hybrid surfaces, Aug. 1988.
18.
R. Gershon, A. D. Jepson and J. K. Tsotsos, "Highlight identification using chromatic information", Proc. IEEE First Int. Conf. Comput. Vision (ICCV), pp. 161-171, 1987-June.
19.
G. Klinker, A physical approach to color image understanding, May 1988.
20.
K. Koshikawa, "A polarimetric approach to shape understanding", Proc. Sixth Int. Joint Conf. Artificial Intell. (IJCAI), pp. 493-495, 1979.
21.
K. Koshikawa and Y. Shirai, "A model-based recognition of glossy objects using their polarimetric properties", Advances Robotics, vol. 2, no. 2, 1987.
22.
H. Marion, Classical Electromagnetic Radiation, New York:Academi, 1980.
23.
D. Marr, Vision, San Francisco:Freeman, 1982.
24.
S. K. Nayar and A. C. Sanderson, "Determining surface orientation of specular surfaces by intensity encoded Illumination", Proc. SPIE Opt. Illumination Image Sensing Machine Vision II, vol. 850, pp. 122-127, 1987-Nov.
25.
G. Porter and J. Mundy, "Automatic visual inspection of metal surfaces", Proc. SPIE, vol. 281, pp. 176-181, 1981.
26.
G. Klinker, S. Shafer and T. Kanade, "Using a color reflection model to separate highlights from object color", Proc. IEEE First Intern. Conf. Compul. Vision (ICCV), pp. 145-150, 1987-June.
27.
S. Shafer, "Using color to separate reflection components", Color Research and Application, vol. 10, pp. 210-218, 1985.
28.
R. Siegal and J. R. Howell, Thermal Radiation Heat Transfer, New York:McGraw-Hill, 1981.
29.
H. D. Tagare and R. J. P. deFigueiredo, "A theory of photometric stereo for a general class of reflectance maps", Proc. IEEE Conf. Comput. Vision Patt. Recognition (CVPR), pp. 38-45, 1989-June.
30.
K. Torrance and E. Sparrow, "Theory for off-specular reflection from roughened surfaces", J. Opt. Soc.Amer., vol. 57, pp. 1105-1114, 1967.