Abstract:
Ear recognition has received broad attention from the biometric community and its emerging usage in multiple applications is raising new security concerns, with robustnes...Show MoreMetadata
Abstract:
Ear recognition has received broad attention from the biometric community and its emerging usage in multiple applications is raising new security concerns, with robustness against presentation attacks being a very active field of research. This paper addresses for the first time the ear presentation attack detection problem by developing an exhaustive benchmarking study on the performance of state-of-the-art light field and non-light field based ear presentation attack detection solutions. In this context, this paper also proposes an appropriate ear artefact database captured with a Lytro ILLUM lenslet light field camera, including both 2D and light field contents, using several types of presentation attack instruments, including laptop, tablet and two different mobile phones. Results show very promising performance for two recent light field based presentation attack detection solutions originally proposed for face presentation attack detection.
Date of Conference: 03-07 September 2018
Date Added to IEEE Xplore: 02 December 2018
ISBN Information: