Loading [MathJax]/extensions/MathMenu.js
Method of Moments Simulation of Modulated Metasurface Antennas With a Set of Orthogonal Entire-Domain Basis Functions | IEEE Journals & Magazine | IEEE Xplore

Method of Moments Simulation of Modulated Metasurface Antennas With a Set of Orthogonal Entire-Domain Basis Functions


Abstract:

A family of orthogonal and entire-domain basis functions (named Fourier-Bessel) is proposed for the analysis of circular modulated metasurface (MTS) antennas. In the stru...Show More

Abstract:

A family of orthogonal and entire-domain basis functions (named Fourier-Bessel) is proposed for the analysis of circular modulated metasurface (MTS) antennas. In the structures at hand, the MTS is accounted for in the electric field integral equation (EFIE) as a sheet transition impedance boundary condition on the top of a grounded dielectric slab. The closed-form Hankel transform of the Fourier-Bessel basis functions (FBBFs) allows one to use a spectral domain formulation in the method-of-moments (MoM) solution of the EFIE. Moreover, these basis functions are fully orthogonal, which implies that they are able to represent the global evolution of the current distribution in a compact form. FBBFs also present a better filtering capability of their spectrum compared to other well-known orthogonal families such as the Zernike functions. The obtained MoM matrix is sparse and compact, and it is thus very well-conditioned and can be efficiently computed and inverted. The numerical results based on the proposed decomposition are presented and compared with those based on the use of the Gaussian ring basis functions and with the full-wave analysis of MTS antennas implemented with small printed elements. A very good agreement is observed.
Published in: IEEE Transactions on Antennas and Propagation ( Volume: 67, Issue: 2, February 2019)
Page(s): 1119 - 1130
Date of Publication: 11 November 2018

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

In recent years, a lot of interest has been attracted by artificial surfaces able to provide electromagnetic properties that one cannot find in nature [1], [2]. Such structures, commonly referred to as metasurfaces (MTSs), can be employed in a wide range of frequencies, from microwaves [3] to optics [4]. Although MTSs may also be used to tailor the transmission of space waves [4], [5], they have found a vast number of applications in the control of surface-wave (SW) wavefronts [6], [7] and the design of aperture antennas [8]–[14]. At microwave frequencies, MTSs may be implemented as dense textures of subwavelength elements (typically , with being the free-space wavelength) printed on a grounded dielectric slab [10]. The resulting number of printed patches is generally around 104 for devices with a diameter. Indeed, MTS antennas [11] generally consist of circular apertures, where an SW launcher [15] is used to excite the structure. This paper will focus on circular apertures, bearing in mind that a proper stretching of the proposed basis functions may enable the treatment of elliptical ones [12], [16], [17].

Select All
1.
C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’hara, A. K. Azad and A. J. Taylor, "A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials", Metamaterials, vol. 3, no. 2, pp. 100-112, 2009.
2.
C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’hara, J. Booth and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials", IEEE Antennas Propag. Mag., vol. 54, no. 2, pp. 10-35, Apr. 2012.
3.
S. Maci, G. Minatti, M. Casaletti and M. Bosiljevac, "Metasurfing: Addressing waves on impenetrable metasurfaces", IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1499-1502, Feb. 2011.
4.
N. Yu et al., "Flat optics: Controlling wavefronts with optical antenna metasurfaces", IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 3, pp. 4700423, May/Jun. 2013.
5.
C. Pfeiffer and A. Grbic, "Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets", Phys. Rev. Lett., vol. 110, pp. 197401, May 2013.
6.
R. Quarfoth and D. Sievenpiper, "Artificial tensor impedance surface waveguides", IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3597-3606, Jul. 2013.
7.
M. Mencagli, E. Martini, D. González-Ovejero and S. Maci, "Metasurfing by transformation electromagnetics", IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1767-1770, Oct. 2014.
8.
A. M. Patel and A. Grbic, "A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface", IEEE Trans. Antennas Propag., vol. 59, no. 6, pp. 2087-2096, Jun. 2011.
9.
D. González-Ovejero, G. Minatti, G. Chattopadhyay and S. Maci, "Multibeam by metasurface antennas", IEEE Trans. Antennas Propag., vol. 65, no. 6, pp. 2923-2930, Jun. 2017.
10.
G. Minatti, S. Maci, P. De Vita, A. Freni and M. Sabbadini, "A circularly-polarized isoflux antenna based on anisotropic metasurface", IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 4998-5009, Nov. 2012.
11.
G. Minatti et al., "Modulated metasurface antennas for space: Synthesis analysis and realizations", IEEE Trans. Antennas Propag., vol. 63, no. 4, pp. 1288-1300, Apr. 2015.
12.
M. Casaletti, M. Śmierzchalski, M. Ettorre, R. Sauleau and N. Capet, "Polarized beams using scalar metasurfaces", IEEE Trans. Antennas Propag., vol. 64, no. 8, pp. 3391-3400, Aug. 2016.
13.
B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher and D. F. Sievenpiper, "Scalar and tensor holographic artificial impedance surfaces", IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3212-3221, Oct. 2010.
14.
G. Minatti, F. Caminita, E. Martini, M. Sabbadini and S. Maci, "Synthesis of modulated-metasurface antennas with amplitude phase and polarization control", IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 3907-3919, Sep. 2016.
15.
S. F. Mahmoud, Y. M. M. Antar, H. F. Hammad and A. P. Freundorfer, "Theoretical considerations in the optimization of surface waves on a planar structure", IEEE Trans. Antennas Propag., vol. 52, no. 8, pp. 2057-2063, Aug. 2004.
16.
H. Bui-Van, C. Craeye and E. de Lera Acedo, "Main beam modeling for large irregular arrays: The SKA1-LOW telescope case", Exp. Astron., vol. 44, no. 2, pp. 239-258, 2017.
17.
M. Bodehou, C. Craeye, H. Bui-Van and I. Huynen, "Fourier–Bessel basis functions for the analysis of elliptical domain metasurface antennas", IEEE Antennas Wireless Propag. Lett., vol. 17, no. 4, pp. 675-678, Apr. 2018.
18.
M. Bercigli et al., "Hybrid SFX/MLayAIM method for the analysis and optimization of large reflectarrays and planar arrays with metallic lenses", Proc. 4th Eur. Conf. Antennas Propag., pp. 1-4, Apr. 2010.
19.
M. Mencagli, E. Martini and S. Maci, "Surface wave dispersion for anisotropic metasurfaces constituted by elliptical patches", IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 2992-3003, Jul. 2015.
20.
D. Gonzalez-Ovejero, F. Mesa and C. Craeye, "Accelerated macro basis functions analysis of finite printed antenna arrays through 2D and 3D multipole expansions", IEEE Trans. Antennas Propag., vol. 61, no. 2, pp. 707-717, Feb. 2013.
21.
L. Matekovits, V. A. Laza and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach", IEEE Trans. Antennas Propag., vol. 55, no. 9, pp. 2509-2521, Sep. 2007.
22.
P. De Vita et al., "Metasurface-by-design: An emerging concept for antennas and beam forming networks", Proc. IEEE-APS Top. Conf. Antennas Propag. Wireless Commun. (APWC), pp. 980-983, Sep. 2013.
23.
B. Stupfel and D. Poget, "Sufficient uniqueness conditions for the solution of the time harmonic Maxwell’s equations associated with surface impedance boundary conditions", J. Comput. Phys., vol. 230, no. 12, pp. 4571-4587, Jun. 2011.
24.
G. Minatti, F. Caminita, E. Martini and S. Maci, "Flat optics for leaky-waves on modulated metasurfaces: Adiabatic floquet-wave analysis", IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 3896-3906, Sep. 2016.
25.
D. González-Ovejero and S. Maci, "Gaussian ring basis functions for the analysis of modulated metasurface antennas", IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 3982-3993, Sep. 2015.
26.
E. H. Bleszynski, M. K. Bleszynski and T. Jaroszewicz, "Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets", IEEE Antennas Propag. Mag., vol. 35, no. 6, pp. 14-25, Dec. 1993.
27.
A. W. Glisson, "Electromagnetic scattering by arbitrarily shaped surfaces with impedance boundary condition", Radio Sci., vol. 27, no. 6, pp. 935-943, Nov./Dec. 1992.
28.
S. Tretyakov, Analytical Modeling in Applied Electromagnetics, Norwood, MA, USA:Artech House, 2003.
29.
E. F. Kuester, M. A. Mohamed, M. Piket-May and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm", IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2641-2651, Oct. 2003.
30.
A. M. Patel and A. Grbic, "Modeling and analysis of printed-circuit tensor impedance surfaces", IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 211-220, Jan. 2013.

Contact IEEE to Subscribe

References

References is not available for this document.