Loading [MathJax]/extensions/MathMenu.js
Deep FisherNet for Image Classification | IEEE Journals & Magazine | IEEE Xplore

Deep FisherNet for Image Classification


Abstract:

Despite the great success of convolutional neural networks (CNNs) for the image classification task on data sets such as Cifar and ImageNet, CNN's representation power is...Show More

Abstract:

Despite the great success of convolutional neural networks (CNNs) for the image classification task on data sets such as Cifar and ImageNet, CNN's representation power is still somewhat limited in dealing with images that have a large variation in size and clutter, where Fisher vector (FV) has shown to be an effective encoding strategy. FV encodes an image by aggregating local descriptors with a universal generative Gaussian mixture model (GMM). FV, however, has limited learning capability and its parameters are mostly fixed after constructing the codebook. To combine together the best of the two worlds, we propose in this brief a neural network structure with FV layer being part of an end-to-end trainable system that is differentiable; we name our network FisherNet that is learnable using back propagation. Our proposed FisherNet combines CNN training and FV encoding in a single end-to-end structure. We observe a clear advantage of FisherNet over plain CNN and standard FV in terms of both classification accuracy and computational efficiency on the challenging PASCAL visual object classes object classification and emotion image classification tasks.
Page(s): 2244 - 2250
Date of Publication: 04 November 2018

ISSN Information:

PubMed ID: 30403638

Funding Agency:


I. Introduction

Convolutional neural networks (CNNs) [1], [2] have led to leap forward in a large number of computer vision applications such as image classification [3]–[11]. On the task of large-scale image classification, particularly ImageNet [12], CNNs-family models have been dominating. CNNs are able to automatically learn rich hierarchical features from the input images.

Contact IEEE to Subscribe

References

References is not available for this document.