Loading [MathJax]/extensions/MathZoom.js
High-Precision Tracking Control of a Soft Dielectric Elastomer Actuator With Inverse Viscoelastic Hysteresis Compensation | IEEE Journals & Magazine | IEEE Xplore

High-Precision Tracking Control of a Soft Dielectric Elastomer Actuator With Inverse Viscoelastic Hysteresis Compensation


Abstract:

In this paper, we present a new control approach for high-precision tracking control of a soft dielectric elastomer actuator (DEA) with inverse viscoelastic hysteresis co...Show More

Abstract:

In this paper, we present a new control approach for high-precision tracking control of a soft dielectric elastomer actuator (DEA) with inverse viscoelastic hysteresis compensation. To this end, we first investigate the viscoelastic response of the DEA and divide it into transition region and stable region. Then, the viscoelastic response is characterized by creep and hysteresis effects according to the different features of the two regions. Finally, a two-level tracking control approach is developed as follows: a direct inverse hysteresis compensation controller with a phenomenological hysteresis model is designed for the viscoelastic hysteresis description and compensation, and a conventional proportional-integral feedback controller is combined to compensate for the model uncertainty and creep effect. To verify the effectiveness of the developed tracking control approach, several experiments are conducted with various reference sinusoidal trajectories. Experimental results show that: when the frequency of the trajectory is within the range of 0.1 to 1 Hz, the maximum tracking error and the root-mean-square error decrease from 40.63% to 3.95% and 28.38% to 1.86%, respectively. This paper is the first attempt to achieve high-precision tracking control of soft DEAs by combining a phenomenological-model feedforward compensator and a feedback control law for the viscoelastic compensation, which may accelerate the practical applications of DEAs to soft robots.
Published in: IEEE/ASME Transactions on Mechatronics ( Volume: 24, Issue: 1, February 2019)
Page(s): 36 - 44
Date of Publication: 04 October 2018

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Due to the capability of large deformation and shape change, dielectric elastomer actuators (DEAs) show promising applications in the field of soft robotics [1]–[3]. In general, a DEA consists of an electroactive polymer membrane sandwiched by compliance electrodes [4]. When a high voltage is applied to the electrodes, the Maxwell stress squeezes the membrane, so that it will expand in area and decrease in thickness to keep a constant volume [5]. On the basis of this working principle, different DEAs have been invented, including rectilinear [6], [7], rotation [8], bending [9], and ballooning [10], [11] motions. During the past decade, there are diverse achievements on design of DEA-driven soft robots, for instance, a soft fish [12] and a soft printable hexapod robot [13]. As one type of actuators, DEAs not only need to satisfy the functional movements of soft robots, but also acquire to achieve accurate positioning control for practical applications.

Select All
1.
A. O’Halloran, F. O’Malley and P. McHugh, "A review on dielectric elastomer actuators technology applications and challenges", J. Appl. Phys., vol. 104, no. 7, pp. 071101-071101-10, 2008.
2.
G. Y. Gu, J. Zhu, L. M. Zhu and X. Y. Zhu, "A survey on dielectric elastomer actuators for soft robots", Bioinspiration Biomimetics, vol. 12, no. 1, pp. 011003, 2017.
3.
G. Kofod and R. Kornbluh, "Dielectric elastomer actuators as intelligent materials for actuation sensing and generation", Intelligent Materials, pp. 396-423, 2008.
4.
R. Pelrine, R. Kornbluh, Q. B. Pei and J. Joseph, "High-speed electrically actuated elastomers with strain greater than 100%", Sci., vol. 287, no. 5454, pp. 836-839, 2000.
5.
C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides and Z. Suo, "Stretchable transparent ionic conductors", Sci., vol. 341, no. 6149, pp. 984-987, 2013.
6.
F. Carpi, C. Salaris and D. De Rossi, "Folded dielectric elastomer actuators", Smart Mater. Struct., vol. 16, no. 2, pp. S300-S305, 2007.
7.
F. A. M. Ghazali, C. K. Mah, A. AbuZaiter, P. S. Chee and M. S. M. Ali, "Soft dielectric elastomer actuator micropump", Sensors Actuators A: Physical, vol. 263, pp. 276-284, 2017.
8.
A. Girard, J. P. L. Bigue, B. M. O’Brien, T. A. Gisby, I. A. Anderson and J. S. Plante, "Soft two-degree-of-freedom dielectric elastomer position sensor exhibiting linear behavior", IEEE/ASME Trans. Mechatronics, vol. 20, no. 1, pp. 105-114, Feb. 2015.
9.
J. Shintake, S. Rosset, B. Schubert, D. Floreano and H. Shea, "Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators", Adv. Mater., vol. 28, no. 2, pp. 231-238, 2016.
10.
F. F. Chen and M. Y. Wang, "Simulation of networked dielectric elastomer balloon actuators", IEEE Robot. Autom. Lett., vol. 1, no. 1, pp. 221-226, Jan. 2016.
11.
F. F. Chen, M. Y. Wang, J. Zhu and Y. F. Zhang, "Interactions between dielectric elastomer actuators and soft bodies", Soft Robot., vol. 3, no. 4, pp. 161-169, 2016.
12.
T. Li et al., "Fast-moving soft electronic fish", Sci. Adv., vol. 3, no. 4, pp. e1602045, 2017.
13.
C. T. Nguyen, H. Phung, T. D. Nguyen, H. Jung and H. R. Choi, "Multiple-degrees-of-freedom dielectric elastomer actuators for soft printable hexapod robot", Sensors Actuators A: Physical, vol. 267, pp. 505-516, 2017.
14.
G. Y. Gu, U Gupta, J. Zhu, L. M. Zhu and X. Y. Zhu, "Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator", IEEE Trans. Robot., vol. 33, no. 5, pp. 1263-1271, Oct. 2017.
15.
J. Zou, G. Y. Gu and L. M. Zhu, "Open-loop control of creep and vibration in dielectric elastomer actuators with phenomenological models", IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 51-58, Feb. 2017.
16.
R. Zhang, P. Iravani and P. Keogh, "Closed loop control of force operation in a novel self-sensing dielectric elastomer actuator", Sensors Actuators A: Phys., vol. 264, pp. 123-132, 2017.
17.
I. D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications, 2003.
18.
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, New York, NY, USA:Springer-Verlag, vol. 121, 1996.
19.
G. Y. Gu, L. M. Zhu, C. Y. Su, H. Ding and S. Fatikow, "Modeling and control of piezo-actuated nanopositioning stages: A survey", IEEE Trans. Autom. Sci. Eng., vol. 13, no. 1, pp. 313-332, Jan. 2016.
20.
F. Branz and A. Francesconi, "Modelling and control of double-cone dielectric elastomer actuator", Smart Mater. Struct., vol. 25, no. 9, pp. 095040, 2016.
21.
N. H. Chuc et al., "Fabrication and control of rectilinear artificial muscle actuator", IEEE/ASME Trans. Mechatronics, vol. 16, no. 1, pp. 167-176, Feb. 2011.
22.
R. Samuel, M. O. Benjamin, G. Todd, X. Daniel, R. S. Herbert and A. A. Iain, "Self-sensing dielectric elastomer actuators in closed-loop operation", Smart Mater. Struct., vol. 22, no. 10, 2013.
23.
T. A. Gisby, B. M. O’Brien, S. Q. Xie, E. P. Calius and I. A. Anderson, "Closed loop control of dielectric elastomer actuators", Proc. SPIE Smart Struct. Mater. + Nondestruct. Eval. Health Monit., vol. 7976, pp. 797920, 2011.
24.
G. Rizzello, D. Naso, A. York and S. Seelecke, "Modeling identification and control of a dielectric electro-active polymer positioning system", IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 632-643, Mar. 2015.
25.
G. Rizzello, D. Naso, B. Turchiano and S. Seelecke, "Robust position control of dielectric elastomer actuators based on LMI optimization", IEEE Trans. Control Syst. Technol., vol. 24, no. 6, pp. 1909-1921, Nov. 2016.
26.
T. Hoffstadt and J. Maas, "Adaptive sliding model position control for dielectric elastomer actuators", IEEE/ASME Trans. Mechatronics, vol. 22, no. 5, pp. 2241-2251, Oct. 2017.
27.
Z. Suo, "Theory of dielectric elastomers", Acta Mechanica Solida Sinica, vol. 23, no. 6, pp. 549-578, 2010.
28.
Q. Q. Wang and C. Y. Su, "Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations", Automatica, vol. 42, no. 5, pp. 859-867, 2006.
29.
M. Al Janaideh, S. Rakheja and C. Y. Su, "An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control", IEEE/ASME Trans. Mechatronics, vol. 16, no. 4, pp. 734-744, Aug. 2011.
30.
Z. Li and J. Shan, "Modeling and inverse compensation for coupled hysteresis in piezo-actuated Fabry-Perot spectrometer", IEEE/ASME Trans. Mechatronics, vol. 22, no. 4, pp. 1903-1913, Aug. 2017.

Contact IEEE to Subscribe

References

References is not available for this document.