Abstract:
We present a theoretical investigation of the spectral properties of spontaneous emission in semiconductor optical amplifiers. We use an extended (3/spl times/3) transfer...Show MoreMetadata
Abstract:
We present a theoretical investigation of the spectral properties of spontaneous emission in semiconductor optical amplifiers. We use an extended (3/spl times/3) transfer matrix formalism to derive in the spectral domain an expression for the total longitudinally averaged internal field, which is valid regardless of the levels of optical input and bias current. The material parameters are saturated not only by the monochromatic signal, but also by the amplified spontaneous emission, filtered into the resonance modes of the structure, and integrated over its whole spectral range.
Published in: IEEE Journal of Quantum Electronics ( Volume: 36, Issue: 6, June 2000)
DOI: 10.1109/3.845728
References is not available for this document.
Select All
1.
R. Fortenberry, A. J. Lowery, W. L. Ha and R. S. Tucker, "Photonic packet switching using semiconductor optical amplifier", Electron. Lett., vol. 27, no. 14, pp. 1305-1307, 1991.
2.
M. Eiselt, G. Großkopff, R. Ludwig, W. Pieper and H. G. Weber, "Photonic ATM switching with semiconductor laser amplifier gates", Electron. Lett., vol. 28, no. 15, pp. 1438-1439, 1992.
3.
T. Durhuus, B. Mikkelsen and K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion", J. Lightwave Technol., vol. 10, pp. 1056-1065, Aug. 1992.
4.
K. Bertilsson, R. Rörgen, P. A. Andrekson and S. T. Eng, "Characterization of an InGaAsP semiconductor laser amplifier as a multifunctional device", J. Lightwave Technol., vol. 11, pp. 1147-1150, July 1993.
5.
G. Giuliani, P. Cinguino and V. Seano, " Multifunctional characteristics of 1.5 \$mu\$ m two-section amplifier-modulator-detector SOA ", IEEE Photon. Technol. Lett., vol. 8, pp. 367-369, Mar. 1996.
6.
A. Sharaiha, H. W. Li, F. Marchese and J. Le Bihan, "All-optical logic NOR gate using a semiconductor laser amplifier", Electron. Lett., vol. 33, no. 4, pp. 323-324, 1997.
7.
T. Rampone, H. W. Li and A. Sharaiha, "Semiconductor optical amplifier used as in-line detector with conservation of the signal DC-component conservation", J. Lightwave Technol., vol. 16, pp. 1295-1301, July 1998.
8.
J. P. Weber and S. Wang, "A new method for the calculation of the emission spectrum of DFB and DBR lasers", IEEE J. Quantum Electron., vol. 27, pp. 2256-2266, Oct. 1991.
9.
H. K. Choi, K. L. Chen and S. Wang, "Analysis of two-section coupled-cavity semiconductor lasers", IEEE J. Quantum Electron., vol. QE-20, pp. 385-393, Apr. 1984.
10.
M. J. Adams, J. V. Collins and I. D. Henning, "Analysis of semiconductor laser optical amplifiers", Proc. Inst. Elect. Eng., vol. 132, pp. 58-63, Feb. 1985.
11.
M. J. Adams, "Theory of two-section laser amplifiers", Opt. Quantum Electron., vol. 21, pp. S15-S31, 1989.
12.
L. Gillner, "Modulation properties of a near travelling-wave semiconductor laser amplifier", Proc. Inst. Elect. Eng., vol. 139, no. 5, pp. 331-338, Oct. 1992.
13.
R. Bonello and I. Montrosset, "Analysis of multisection and multielectrode semiconductor lasers", J. Lightwave Technol., vol. 10, pp. 1890-1900, Dec. 1992.
14.
J. Wang and J. Chen, "Tracing amplified spontaneous emission inside multi-segment semiconductor lasers", J. Opt. Commun., vol. 20, no. 1, pp. 8-11, 1999.
15.
A. Yariv and P. Yeh, Optical Waves in Crystals, NY, New York:Wiley, 1984.
16.
Y. Yamamoto, S. Machida, Y. Horikoshi and K. Igeta, "Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity", Opt. Commun., vol. 80, no. 5, 6, pp. 337-342, 1991.
17.
J.-M. Goujon and Y. Boucher, "Multifunctional two-electrode Fabry-Perot device", Progress in Electromagnetism Research Symp. (PIERS 98), July 1998.
18.
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, 1990.
19.
D. Marcuse, "Computer model of an injection laser amplifier", IEEE J. Quantum Electron., vol. QE-19, pp. 63-73, 1983.
20.
I. D. Henning, M. J. Adams and J. V. Collins, "Performance predictions from a new optical amplifier model", IEEE J. Quantum Electron., vol. QE-21, pp. 609-613, June 1985.
21.
G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers, NY, New York:Van Nostrand, 1986.
22.
P. Bhattacharya, Semiconductor Optoelectronic Devices, NJ, Englewood Cliffs:Prentice-Hall, 1993.
23.
H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, Singapore:World Scientific, 1990.
24.
W. W. Chow, S. W. Koch and M. Sargent III, Semiconductor-Laser Physics, Germany, Heidelberg:Springer-Verlag, 1994.
25.
K. Petermann, "Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding", IEEE J. Quantum Electron., vol. QE-15, pp. 566-570, July 1979.
26.
Y. Boucher and A. Sharaiha, " A comparison between equivalent circuit model and extended (3 \$times\$ 3) transfer matrix model for multielectrode semiconductor optical amplifiers ", Conf. Semiconductor Integrated Opto-Electronics (SIOE 99), 1999-Apr.
27.
A. Sharaiha and M. Guegan, "Equivalent circuit model for multielectrode semiconductor optical amplifiers and analysis of in-line photodetection in bidirectional transmissions", J. Lightwave Technol., vol. 18, pp. 700-707, May 2000.
28.
M. A. Newkirk, U. Koren, B. I. Miller, M. D. Chien, M. G. Young, T. L. Koch, et al., "Three-section semiconductor optical amplifier for monitoring of optical gain", IEEE Photon. Technol. Lett., vol. 4, pp. 1258-1260, Nov. 1992.
29.
P. Yeh, Optical Waves in Layered Media, NY, New York:Wiley, 1988.
30.
J.-M. Goujon, Y. Boucher and J. Le Bihan, "Contribution to the theoretical study of tunable two-electrode multisection semiconductor lasers", Conf. Semiconductor Integrated Opto-Electronics (SIOE 96), 1996-Apr.