List of Acronyms | |
ABEP | Average Bit Error Probability |
AMP | Amplitude Phase Modulation |
AHD | Average Hamming Distance |
BER | Bit Error Rate |
C-GSM | Conventional Generalized Spatial Modulation |
CS | Compressive Sensing |
CSI | Channel State Information |
ED | Euclidean Distances |
E-GSM | Enhanced Generalized Spatial Modulation |
E-HT-GSM | Enhanced High Throughput GSM |
GSM | Generalized Spatial Modulation |
HD | Hamming Distance |
HM-GSM | Hybrid Mapping based GSM |
ML | Maximum Likelihood |
MED | Minimum Euclidean Distance |
MIMO | Multiple Input Multiple Output |
PEP | Pairwise Error Probability |
RF | Radio Frequency |
SM | Spatial Modulation |
TA | Transmit Antennas |
TAC | Transmit Antenna Combination |
List of Symbols | |
Transmission rate | |
The number of bits that one TAC index carried | |
The number of bits that APM symbols carried | |
The total number of TACs | |
The complexity of C-GSM system | |
The complexity of optimal TAC selection | |
The value of AHD | |
The value of PEP | |
The channel matrix | |
The q-th TAC set | |
The TAC set including all the TACs | |
The j-th TAC | |
The modulation order of APM | |
The total number of TAs | |
The number of activated TAs | |
The total number of TACs | |
The number of one legitimate TAc set | |
The number of discarded TACs | |
The number of receiver antennas | |
The noise matrix | |
The ABEP of GSM system | |
The receive signal |
Introduction
Generalized Spatial Modulation (GSM) [1], [2] is a novel low-complexity high-efficiency scheme relying on a reduced number of Radio Frequency (RF) chain for Multi-Input Multi-Output (MIMO) transmission. In the GSM scheme, multiple Transmit Antennas (TAs) are activated symbol in each interal, hence GSM may be flexibly reconfigured between Spatial Modulation (SM) [3]–[5] and Spatial Multiplexing [6]. Specifically, in the GSM scheme, the information bits are conveyed by the index of the activated Transmit Antenna Combination (TAC) as well as by the Amplitude Phase Modulation (APM) symbols. Consequently, the GSM scheme attains a high bandwidth efficiency, despite using a low number of RF chains at the transmitter. Several independent studies have proved that SM and GSM are both promising candidates in the future wireless communications [7]–[11].
In GSM systems,
Early contributions on GSM have been mainly focused on the low-complexity receiver design [12]–[19], on the performance and achieve rate analysis [20]–[22], and on their applications for specific communication scenarios [23]. Specifically, Xiao et al. [12] proposed a low-complexity near- Maximum Likelihood (ML) detector. The detectors of [13]–[16] exhibited a considerably reduced complexity, since the sparsity of the activated antennas was exploited based on the classic Compressive Sensing (CS) algorithms. The threshold-aided CS detector of [16] is capable of striking a better trade-off between the performance and complexity than other detection schemes. Moreover, the detector of [17] employed both forward error correction codes and turbo equalization to achieve the highest possible coding gain. Additionally, the low-complexity GSM conceived receiver design for dispersive channels have been investigated in [18] and [19]. On the other hand, the capacity of GSM system was analyzed in [20]–[22] and the achievable rate was quantified in [21]. Since its high capacity and energy efficiency, GSM is a promising candidate for millimeter-wave communications [23]. However, the above research did not consider the Channel Sate Information (CSI) at the transmitter.
Recently, some transceiver designs of SM-based systems were developed in [24]–[32], as shown in Table 1. Moreover, the CSI based link adaptation, antenna selection-aided distributed/cooperative protocols and precoding were investigated in [33]–[40] for SM, as shown in Table 2. However, to the best of our knowledge how to select the TAC of GSM has not been investigated to date. Against the above background, the major contributions of this paper are summarized as follows:
An Enhanced GSM (E-GSM) system is proposed, where the TAC set is selected by exploiting the knowledge of the CSI based on maximizing the Minimum Euclidean Distance (MED). A low-complexity optimal TAC selection algorithm is developed for the E-GSM system. Our simulation results show that the proposed E-GSM scheme is capable of providing considerable performance gain over the Conventional GSM (C-GSM) system.
A Hybrid Mapping based GSM (HM-GSM) system operating without CSI knowledge is developed, where the TAC selection and bit-to-TAC mapping are both taken into consideration for improving the Average Bit Error Probability (ABEP).
Then an Enhanced Throughput GSM (E-HT-GSM) system is proposed, which conveys an extra bit. Specifically, the proposed E-HT-GSM system makes full use of all the TACs.
The remainder of this paper is organized as follows. Section II gives a rudimentary introduction of the C-GSM system. In Section III, the optimal-TAC-set based E-GSM with CSI is introduced and a low-complexity TAC selection algorithm is proposed. In Section IV, a hybrid bit-to-TAC mapping method dispensing with CSI knowledge is proposed for the HM-GSM system to achieve a better ABEP. In Section V, an E-HT-GSM scheme is proposed, where all the TACs are exploited and the phase optimization as well as its performance analysis is offered in Section V. Section VI presents the simulation results, while Section VI concludes this paper. For reader’s convenience, the full table of contents is include here.
Notation:
Conventional GSM
In C-GSM systems, \begin{align*} {\mathbf {x}}_{(I_{i},\mathbf {s})}= {\left [{ {\ldots,0,{s_{i_{1}}},0,\ldots,0,{s_{i_{2}}},0\ldots,0,{s_{i_{N_{u}}}},0,\ldots } }\right]^{T}}, \\\tag{1}{}\end{align*}
Let \begin{equation*} {\mathbf {y}} = {\mathbf {H}}{{\mathbf {x}}_{(I_{i},{\mathbf {s}}_{i})}} + {\mathbf {n}} = \sum \limits _{t = {i_{1}}}^{{i_{N_{u}}}} {{{\mathbf {h}}_{t}}{s_{t}}} + {\mathbf {n}} = {{\mathbf {H}}_{I_{i}}}{\mathbf {s}}_{i} + {\mathbf {n}},\tag{2}\end{equation*}
It follows from Eq. (2) that, the optimal ML-based demodulator can be formulated as \begin{equation*} {(\hat I,{\hat {\mathbf {s}}})_{\text {ML}}} = \mathop {\arg \min }\limits _{I \in \mathbb {I},{\mathbf {s}} \in \mathbb {S} } \left \|{ {{\mathbf {y}} - {{\mathbf {H}}_{I}}{\mathbf {s}}} }\right \|_{F}^{2},\tag{3}\end{equation*}
Transmit Antenna Combination Selection for the GSM System Relying on Channel State Information
In the C-GSM system,
A. Optimal TAC Set Based E-GSM
For the C-GSM system having \begin{align*} d_{\min }^{q}=&~\min \limits _{{{\mathbf {x}}_{m}} \ne {{\mathbf {x}}_{n}}} ||{\mathbf {H}}{{\mathbf {x}}_{m}} - {\mathbf {H}}{{\mathbf {x}}_{n}}||_{F}^{2} \\=&~\min \limits _{I_{m},{I_{n}} \in {\mathbb {I}_{q}},({I_{m}},{{\mathbf {s}}_{m}}) \ne ({I_{n}},{{\mathbf {s}}_{n}})} ||{{\mathbf {H}}_{I_{m}}}{{\mathbf {s}}_{m}} - {{\mathbf {H}}_{I_{n}}}{{\mathbf {s}}_{n}}||_{F}^{2}.\tag{4}\end{align*}
\begin{equation*} \hat q = \arg \max \limits _{q \in \{1,2,\ldots,C_{N_{\text {all}}}^{N}\}} (d_{\min }^{q}).\tag{5}\end{equation*}
\begin{equation*} \mathbb {X}_{\text {all}}=[\mathbf {x}_{1},\ldots,\mathbf {x}_{NM^{N_{u}}},\ldots,\mathbf {x}_{N_{\text {all}}M^{N_{u}}}],\tag{6}\end{equation*}
\begin{equation*} d_{m,n}=||{\mathbf {H}}{{\mathbf {x}}_{m}} - {\mathbf {H}}{{\mathbf {x}}_{n}}||_{F}^{2}, m\ne n.\tag{7}\end{equation*}
Step 1:
Obtain the
values of$({N_{\text {all}}M^{N_{u}}}-1)^{2}$ according to (7), which is shown in Table 3, where we have$d_{m,n}$ and$N_{M}=M^{N_{u}}$ .$d_{m,n}=d_{n,m}$ Step 2:
Obtain the legitimate TAC sets
,$\mathbb {I}_{q}$ .$q=(1,\ldots,C_{N_{\text {all}}}^{N})$ Step 3:
For each TAC set
, find the$\mathbb {I}_{q}$ based on Table 3. Specifically, if we have$d_{\min }^{q}$ , we find the MED$\mathbb {I}_{q}=[I_{1},\ldots,I_{N}]$ from the values of$d_{\min }^{q}$ corresponding to$d_{m,n}$ based on Table 3.$\mathbb {I}_{q}$ Step 4:
Get the optimal TAC set index by (5).
Although the simplified optimal TAC set can be obtained by only calculating
B. Low-Complexity Optimal TAC Selection Based E-GSM
In this section, low-complexity optimal TAC selection algorithms are developed for
1) TAC Design for $M=1$
For the case of \begin{equation*} {\mathbf {W}} = \left [{ {\begin{array}{*{20}{c}} {{w_{11}}}&\quad {{w_{12}}}&\quad \cdots &\quad {{w_{1{N_{{\mathrm {all}}}}}}}\\ {{w_{21}}}&\quad {{w_{22}}}&\quad \cdots &\quad {{w_{2{N_{{\mathrm {all}}}}}}}\\ \vdots &\quad \vdots &\quad \ddots &\quad \vdots \\ {{w_{{N_{{\mathrm {all}}}}1}}}&\quad {{w_{{N_{{\mathrm {all}}}}2}}}&\quad \cdots &\quad {{w_{{N_{{\mathrm {all}}}}{N_{{\mathrm {all}}}}}}} \end{array}} }\right]\!,\tag{8}\end{equation*}
\begin{align*} w_{mn}=&~||{{\mathbf {H}}_{I_{m}}} - {{\mathbf {H}}_{I_{n}}})||_{F}^{2} \\=&~\left \|{ {({{\mathbf {h}}_{m_{1}}} + {{\mathbf {h}}_{m_{2}}} + \cdots {{\mathbf {h}}_{{m_{N_{u}}}}}) - ({{\mathbf {h}}_{n_{1}}} + {{\mathbf {h}}_{n_{2}}} + \cdots {{\mathbf {h}}_{{n_{N_{u}}}}})} }\right \|_{F}^{2} \\=&~\! \begin{cases} 0,&\quad \!\!\!\!\! {\mathrm {if~}}{I_{m}} = {I_{n}}\\ ||{{\mathbf {H}}_{D_{m}}} - {{\mathbf {H}}_{D_{n}}})||_{F}^{2},&\quad \!\!\!\!\! {\mathrm {if~}}{I_{m}} \ne {I_{n}}, \end{cases}\tag{9}\end{align*}
\begin{equation*} {D_{m}} = \mathrm {setdiff}({I_{m}}, \Lambda), {D_{n}} = {\mathrm {setdiff}}({I_{n}}, \Lambda),\tag{10}\end{equation*}
\begin{align*} d_{\min }^{q}=&~\min \limits _{{{\mathbf {x}}_{m}} \ne {{\mathbf {x}}_{n}}} ||{\mathbf {H}}{{\mathbf {x}}_{m}} - {\mathbf {H}}{{\mathbf {x}}_{n}}||_{F}^{2} \\=&~\min \limits _{\forall {D_{m,}}{D_{n}}} ||{{\mathbf {H}}_{D_{m}}} - {{\mathbf {H}}_{D_{n}}})||_{F}^{2}.\tag{11}\end{align*}
For the generalized cases of \begin{equation*} {N_{{\mathrm {same}}}} = 2(C_{N_{t} - 2({N_{u}} - \beta)}^\beta).\tag{12}\end{equation*}
\begin{equation*} {N_{ED}} = \sum \limits _{\beta = 0}^{N_{u} - 1} {\frac {{C_{N_{t}}^\beta C_{N_{t} - \beta }^{N_{u} - \beta }C_{N_{t} - \beta - {N_{u}}}^{N_{u} - \beta }}}{2}}.\tag{13}\end{equation*}
Step 1:
Obtain the ED matrix
based on$\mathbf {W}$ different EDs${N_{ED}}$ .$\mathbf {w}=[w_{1}, \ldots, w_{N_{ED}}]$ Step 2:
Sort the
EDs in an ascending order as$N_{ED}$ \begin{equation*} [v_{1},v_{2},\ldots v_{N_{ED}}]=\text {sort}(\mathbf {w},`ascend').\tag{14}\end{equation*} View Source\begin{equation*} [v_{1},v_{2},\ldots v_{N_{ED}}]=\text {sort}(\mathbf {w},`ascend').\tag{14}\end{equation*}
Step 3:
Remove all the values of
,$v_{1}~v_{2}$ , in the sequence from the matrix$\ldots$ until we removed$\mathbf {W}$ TACs defining$N_{\text {left}}$ .$\mathbb {I}_{\text {Re}}$ Step 4:
Obtain the optimal TAC set as
.$\mathbb {I}_{o}=\mathbb {I}_{\text {all}}\backslash \mathbb {I}_{\text {Re}}$
Considering \begin{align*} {w_{12}}=&~{w_{21}} = {w_{56}} = {w_{65}} = ||{{\mathbf {h}}_{2}}-{{\mathbf {h}}_{3}}||_{F}^{2}; \\ {w_{13}}=&~{w_{31}} = {w_{46}} = {w_{64}} = ||{{\mathbf {h}}_{2}}-{{\mathbf {h}}_{4}}||_{F}^{2}; \\ {w_{14}}=&~{w_{41}} = {w_{36}} = {w_{63}} = ||{{\mathbf {h}}_{1}}-{{\mathbf {h}}_{3}}||_{F}^{2}; \\ {w_{15}}=&~{w_{51}} = {w_{26}} = {w_{62}} = ||{{\mathbf {h}}_{1}}-{{\mathbf {h}}_{4}}||_{F}^{2}; \\ {w_{16}}=&~{w_{61}} = ||({{\mathbf {h}}_{1}} + {{\mathbf {h}}_{2}}) - ({{\mathbf {h}}_{3}} + {{\mathbf {h}}_{4}})||_{F}^{2}; \\ {w_{23}}=&~{w_{32}} = {w_{45}} = {w_{54}} = ||{{\mathbf {h}}_{3}}-{{\mathbf {h}}_{4}}||_{F}^{2}; \\ {w_{24}}=&~{w_{42}} = {w_{35}} = {w_{53}} = ||{{\mathbf {h}}_{1}}-{{\mathbf {h}}_{2}}||_{F}^{2}; \\ {w_{25}}=&~{w_{52}} = ||({{\mathbf {h}}_{1}} + {{\mathbf {h}}_{3}}) - ({{\mathbf {h}}_{2}} + {{\mathbf {h}}_{4}})||_{F}^{2}; \\ {w_{34}}=&~{w_{43}} = ||({{\mathbf {h}}_{1}} + {{\mathbf {h}}_{4}}) - ({{\mathbf {h}}_{2}} + {{\mathbf {h}}_{3}})||_{F}^{2}.\tag{15}\end{align*}
2) TAC Design for $M>1$
For the case of \begin{align*} {w_{mn}}=&~\min \limits _{\forall {{\mathbf {s}}_{m}},{{\mathbf {s}}_{n}}} ||{{\mathbf {H}}_{I_{m}}}{{\mathbf {s}}_{m}} - {{\mathbf {H}}_{I_{n}}}{{\mathbf {s}}_{n}}||_{F}^{2} \\=&~\! {\begin{cases} \min \limits _{\forall {{\mathbf {s}}_{m}},{{\mathbf {s}}_{n}}} ||{{\mathbf {H}}_{I_{m}}}({{\mathbf {s}}_{m}} - {{\mathbf {s}}_{n}})||_{F}^{2},&\quad {\mathrm {if~}}{I_{m}} = {I_{n}},{{\mathbf {s}}_{m}} \ne {{\mathbf {s}}_{n}}\\ \min \limits _{\forall {{\mathbf {s}}_{m}},{{\mathbf {s}}_{n}}} ||{{\mathbf {H}}_\Lambda }({\mathbf {s}}_{m}^\Lambda - {\mathbf {s}}_{n}^\Lambda) \\ \quad~ \quad + {{\mathbf {H}}_{D_{m}}}\bar {{\mathbf {s}}}_{m}^\Lambda \!-\! {{\mathbf {H}}_{D_{n}}}\bar {{\mathbf { s}}}_{n}^\Lambda ||_{F}^{2},&\quad {\mathrm {if~}}{I_{m}} \ne {I_{n}} \end{cases}}\!\!\! \\\tag{16}\end{align*}
Considering
C. Complexity Analysis of E-GSM Systems
In this section, the complexity orders of the ML-aided C-GSM and of the proposed E-GSM are compared in terms of the numbers of real-valued multiplications and additions. For the specific matrices of \begin{equation*} C_{\text {C-GSM}}=(8N_{r}N_{u} +4N_{r}-1)NM^{N_{u}},\tag{17}\end{equation*}
The complexity order of the low-complexity optimal TAC set based E-GSM system with ML detector is \begin{align*} C_{{\mathrm {E - GSM}}}^{{\mathrm {Op}}} \!= \!\! \begin{cases} {C_{{\mathrm {C - GSM}}}} \!+\! {C_{F}}N_{ED}^{},&\quad \text {if} ~ M = 1\\ {C_{{\mathrm {C - GSM}}}} \!+\! {C_{F}}N_{ED}^{M}\displaystyle \frac {{(1 \!+\! {M^{N_{u}}}){M^{N_{u}}}}}{2},&\quad \text {else} \end{cases}\!\!\!\!\! \\\tag{18}\end{align*}
Transmit Antenna Combination Selection for the GSM System Operating Without Channel State Information
In this selection, the ABEP assisted TAC selection conceived for the HM-GSM system operating without CSI knowledge is investigated. Firstly, the ABEP analysis of the GSM system is carried out. Then, its TAC selection is developed. Finally, a novel bit-to-TAC mapping approach is proposed for further improving the GSM system’s performance.
A. ABEP Analysis of the GSM System
In this section, the ABEP performance of the GSM system is derived. Let us denote the transmit and receive signal of GSM by \begin{equation*} {P_{b}} = \sum \limits _{\forall {{\mathbf {x}}_{i}}} {\sum \limits _{\forall {{\mathbf {x}}_{j}} \ne {{\mathbf {x}}_{i}}} {\frac {{{d_{{{\mathbf {x}}_{i}},{{\mathbf {x}}_{j}}}}{\bar P_{e}}({{\mathbf {x}}_{i}} \to {{\mathbf {x}}_{j}})}}{{B{2^{B}}}}} },\tag{19}\end{equation*}
\begin{align*} {\bar P_{e}}({{\mathbf {x}}_{i}} \to {{\mathbf {x}}_{j}}) = F(\bar \zeta) = \gamma (\bar \varsigma)\sum \limits _{k = 0}^{N_{r} - 1} {C_{N_{r} - 1 + k}^{k}} {[1 - \gamma \left ({{\bar \varsigma } }\right)]^{k}}, \\\tag{20}\end{align*}
\begin{align*} {\bar \varsigma }= \! \begin{cases} \displaystyle \frac {{{{\left |{ {s_{1} - {\hat s_{1}}} }\right |}^{2}} + \cdots + {{\left |{ {{s_{N_{u}}} - {\hat s_{N_{u}}}} }\right |}^{2}}}}{{2{\sigma ^{2}}}},\quad {\text {if }m=N_{u}} \\[-2pt] \displaystyle \frac {{{{\left |{ {s_{1} - {\hat s_{1}}} }\right |}^{2}} + \cdots + {{\left |{ {s_{m} - {\hat s_{m}}} }\right |}^{2}} + 2({N_{u}} - m)}}{{2{\sigma ^{2}}}},\\[-2pt] &\hspace {-5.2pc}\quad {\text {if}}~ 0 <m< N_{u} \\[-2pt] \displaystyle \frac {{2{N_{u}}}}{{2{\sigma ^{2}}}},&\hspace {-5.4pc}\quad {\text {if}} ~ m=0,\\[-2pt] \end{cases} \\[-2pt]\tag{21}\end{align*}
Observe from (21) that there are lots of identical \begin{align*} {P_{b}}=&~\frac {{\sum \limits _{t = 1}^{\lambda _{1}} {d_{\bar \varsigma _{1}}^{t}F({\bar \varsigma _{1}})} + \sum \limits _{t = 1}^{\lambda _{2}} {d_{\bar \varsigma _{2}}^{t}F({\bar \varsigma _{2}})} + \cdots + \sum \limits _{t = 1}^{\lambda _{n}} {d_{\bar \varsigma _{2}}^{t}F({\bar \varsigma _{n}})} }}{{B{2^{B}}}} \\=&~D({\bar \varsigma _{1}})F({\bar \varsigma _{1}}) + D({\bar \varsigma _{2}})F({\bar \varsigma _{2}}) + \cdots + D({\bar \varsigma _{n}})F({\bar \varsigma _{n}}) \\\tag{22}{}\end{align*}
\begin{align*}&D({\bar \varsigma _{p}}) = {{\sum \limits _{t = 1}^{\lambda _{p}} {d_{\bar \varsigma _{p}}^{t}} }}/{{B{2^{B}}}},\quad p = 1,\ldots,n, \\[-8pt]&\sum \limits _{t = 1}^{\lambda _{1}} {d_{\bar \varsigma _{1}}^{t}} + \cdots + \sum \limits _{t = 1}^{\lambda _{n}} {d_{\bar \varsigma _{n}}^{t}} = \sum \limits _{i = 1}^{2^{B}} {\sum \limits _{j = 1}^{2^{B}} {d\left ({{{{\mathbf {x}}_{i}},{{\mathbf {x}_{j}}}} }\right)} } = {2^{B}}\sum \limits _{u = 1}^{B} {C_{B}^{u}u},\!\!\! \\\tag{23}{}\end{align*}
Next, AHD based TAC selection is developed. Since only the TACs are selected, we employ \begin{equation*} {\bar \varsigma }= \! \begin{cases} 0,&\quad {\text {if }m=N_{u}} \\ \displaystyle \frac {2({N_{u}} - m)}{{2{\sigma ^{2}}}},&\quad {\text {if}}~ 0 <m< N_{u} \\ \displaystyle \frac {{2{N_{u}}}}{{2{\sigma ^{2}}}},&\quad {\text {if}} ~ m=0. \\ \end{cases}\tag{24}\end{equation*}
\begin{align*} {\bar \varsigma _{1}}=&~\frac {1}{\sigma ^{2}},\quad m = {N_{u}} - 1 \\ {\bar \varsigma _{2}}=&~\frac {2}{\sigma ^{2}},\quad m = {N_{u}} - 2 \\&~\vdots \\ { \bar \varsigma _{N_{u}}}=&~\frac {N_{u}}{\sigma ^{2}},\quad m = 0.\tag{25}\end{align*}
\begin{equation*} F\left ({{\bar \varsigma _{1}} }\right) >>F\left ({{\bar \varsigma _{2}} }\right) > \cdots > F\left ({{{\bar \varsigma _{N_{u}}}} }\right).\tag{26}\end{equation*}
B. TAC Selection
For each TAC
1) TAC Selection for $N_{t}=4, N_{u}=2$
Fig. 3 portrays the TAC selection for the case of \begin{align*} \underbrace {(1,2)}_{I_{1}} \to \psi _{1}^{1}=&~\{ \underbrace {(1,3)}_{I_{2}},\underbrace {(1,4)}_{I_{3}},\underbrace {(2,3)}_{I_{4}},\underbrace {(2,4)}_{I_{5}}\}; \psi _{1}^{0} = \{ \underbrace {(3,4)}_{I_{6}}\} \\ \underbrace {(1,3)}_{I_{2}} \to \psi _{2}^{1}=&~\{ \underbrace {(1,2)}_{I_{1}},\underbrace {(1,4)}_{I_{3}},\underbrace {(2,3)}_{I_{4}},\underbrace {(3,4)}_{I_{6}}\}; \psi _{2}^{0} = \{ \underbrace {(2,4)}_{I_{5}} \\ \underbrace {(1,4)}_{I_{3}} \to \psi _{3}^{1}=&~\{ \underbrace {(1,2)}_{I_{1}},\underbrace {(1,3)}_{I_{2}},\underbrace {(2,4)}_{I_{5}},\underbrace {(3,4)}_{I_{6}}\}; \psi _{3}^{0} = \{ \underbrace {(2,3)}_{I_{4}}. \\\tag{27}{}\end{align*}
Observe from Fig. 3 that by removing
2) TAC Selection for $N_{t}=5, N_{u}=2$
Fig. 4 portrays the TAC selection for the case of \begin{equation*} \underbrace {(1,2)}_{I_{1}} \to \psi _{1}^{0} = \{ \underbrace {(3,4)}_{I_{8}},\underbrace {(3,5)}_{I_{9}},\underbrace {(4,5)}_{{I_{10}}}\}.\tag{28}\end{equation*}
\begin{align*} \psi _{1}^{1}=&~\{ {(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)}\} \\ \psi _{1}^{0}=&~\{ {(3,4),(3,5),(4,5)}\}.\tag{29}\end{align*}
\begin{align*} {\mathbb {I}_{o}}=\{ {\underbrace {(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)}_{\psi _{1}^{1}},\underbrace {(3,4),(3,5)}_{{\mathcal {I}_{{\mathrm {left}}}}}}\}.\!\!\! \\\tag{30}{}\end{align*}
3) Generalized TAC Selection for $N_{u}=2$
Based on the above TAC selection examples, the generalized TAC selection design is introduced as follows.
Step 1:
For the specific TAC
, obtain the corresponding TAC set$I_{j},j\in [1,{N_{\text {all}}}]$ ,$\psi _{j}^{N_{u}-1}$ .$\psi _{j}^{N_{u}-2},\ldots,\psi _{j}^{0}$ Step 2:
Remove
TACs${N_{\text {all}}}-N+1$ from the TAC set${\mathcal {I}_{j}}$ and obtain the${\psi _{j}^{N_{u}-2},\ldots,\psi _{j}^{0}}$ ${\mathcal{ I}}_{\text {left}}=\{\psi _{j}^{N_{u}-2},\ldots,\psi _{j}^{0}\} \backslash {\mathcal {I}_{j}}$ Step 3:
Obtain the final TAC set
.${\mathbb {I}}_{o}=\{\psi _{j}^{N_{u}-1}, {\mathcal{ I}}_{\text {left}} \}$
Due to the associated symmetry, the TAC selection is the same for each
For the case of \begin{equation*} {{\mathbb {I}}}_{{N_{{\mathrm {all}}}}} = \left \{{\! \begin{array}{c} \underbrace {(1,2),(1,3) \cdots (1,{N_{t}})}_{N_{t} - 1}\\ \underbrace {(2,3),(2,4) \cdots (2,{N_{t}})}_{N_{t} - 2}\\ \underbrace {(3,4),(3,5) \cdots (3,{N_{t}})}_{N_{t} - 3}\\ {} \vdots \\ \underbrace {({N_{t}} - 1,{N_{t}})}_{1} \end{array} }\right \}.\tag{31}\end{equation*}
Firstly, for the TAC \begin{align*} \psi _{1}^{ 1}=&~\left \{{\! \begin{array}{c} \underbrace {((1,3), \cdots (1,{N_{t}})}_{N_{t} - 2}\\ \underbrace {(2,3), \cdots (2,{N_{t}})}_{N_{t} - 2} \end{array} }\right \},\quad \! \psi _{1}^{0} = \left \{{\! \begin{array}{c} \underbrace {(3,4), \cdots (3,{N_{t}})}_{N_{t} - 3}\\ {} \vdots \\ \underbrace {({N_{t}} - 1,{N_{t}})}_{1} \end{array} }\right \}\!. \\\tag{32}{}\end{align*}
Secondly, select
4) Generalized TAC Selection for $N_{u}>2$
For the case of \begin{align*} \psi _{1}^{N_{u} - 1}=&~\left \{{\! \begin{array}{c} \underbrace {(1,2,\ldots,({N_{u}} - 1),{N_{u}} + 1), \cdots (1,2,\ldots,{N_{t}})}_{N_{t} - {N_{u}}}\\[-2pt] \underbrace {(1,3\ldots,{N_{u}},{N_{u}} + 1), \cdots (1,3,\ldots,{N_{u}},{N_{t}})}_{N_{t} - {N_{u}}}\\[-2pt] \vdots \\[-2pt] \underbrace {(2,3\ldots,{N_{u}},{N_{u}} + 1), \cdots (2,3,\ldots,{N_{u}},{N_{t}})}_{N_{t} - {N_{u}}} \end{array} }\right \} \\[-2pt] \psi _{1}^{N_{u} - 2}=&~\left \{{\! \begin{array}{c} \underbrace {(1,2,\ldots,({N_{u}} - 1),{N_{u}} + 1), \cdots (1,2,\ldots,{N_{t}})}_{N_{t} - {N_{u}}}\\[-2pt] {} \vdots \\[-2pt] \underbrace {(2,3\ldots,{N_{u}},{N_{u}} + 1), \cdots (2,3,\ldots,{N_{u}},{N_{t}})}_{N_{t} - {N_{u}}} \end{array} }\right \} \\[-2pt]&\qquad \qquad \quad \qquad \qquad \qquad {} \vdots \\[-3pt] \psi _{1}^{0}=&~\left \{{\! \begin{array}{c} \underbrace {({N_{u}} + 1, \cdots 2{N_{u}}), \cdots ({N_{u}} + 1, \cdots {N_{t}})}_{N_{t} - 2{N_{u}} + 1}\\[-2pt] {}~ \vdots \\[-2pt] {}\underbrace {({N_{t}} - {N_{u}} + 1, \cdots,{N_{t}})}_{N_{t} - {N_{u}}} \end{array} }\right \}.\tag{33}\end{align*}
Based on the generalized TAC selection principle, the final TAC set can be obtained as \begin{equation*} {\mathbb {I}_{o}} = \{ \psi _{1}^{N_{u} - 1},{\mathcal {I}_{{\mathrm {left}}}}\}\tag{34}\end{equation*}
C. Bit-to-TAC Mapping
After obtaining the TAC set \begin{equation*} \mathbb {H} = (\underbrace {1,\ldots,1}_{C_{B}^{1}},\underbrace {2,\ldots,2}_{C_{B}^{2}},\ldots,\underbrace {u,\ldots,u}_{C_{B}^{u}},\ldots,\underbrace B_{C_{B}^{B}}).\tag{35}\end{equation*}
\begin{align*} {\lambda _{1}}=&~\lambda _{1}^{1} + \lambda _{1}^{2} + \cdots + \lambda _{1}^{N}, \\ D_{\bar \varsigma _{1}}^{i}=&~\sum {{{\mathbf {H}}_{\lambda _{1}^{i}}}} = \sum \limits _{t = 1}^{\lambda _{1}^{i}} {d_{\bar \varsigma _{1}}^{t}}, \\ \sum \limits _{t = 1}^{\lambda _{1}} {d_{\bar \varsigma _{1}}^{t}}=&~\sum \limits _{i = 1}^{N} {D_{\bar \varsigma _{1}}^{i}}.\tag{36}\end{align*}
\begin{equation*} D({\bar \varsigma _{1}}) = \frac {{\sum \limits _{i = 1}^{N} {D_{\bar \varsigma _{1}}^{i}} }}{{{B^{2B}}}}.\tag{37}\end{equation*}
\begin{align*}&{\min \limits _{{{\mathbf {H}}_{\lambda _{1}^{i}}}}~ [D({\bar \varsigma _{1}})] } \\&s.t.~{\lambda _{1}} = \lambda _{1}^{1} + \lambda _{1}^{2} + \cdots + \lambda _{1}^{N}, \\&\hphantom {s.t.~} D_{\bar \varsigma _{1}}^{i} = \sum {{{\mathbf {H}}_{\lambda _{1}^{i}}}},{{\mathbf {H}}_{\lambda _{1}^{i}}} \in \mathbb {H}\tag{38}\end{align*}
1) Bit-to-TAC Mapping for $N_{t}=4, N_{u}=2$
Fig. 5 presents the bit-to-TAC mapping for the case of \begin{align*} \underbrace {(1,3)}_{{I_{o,1}}} \to \psi _{o,1}^{1}=&~\left \{{ {(1,4),(2,3)} }\right \} \\ \underbrace {(1,4)}_{{I_{o,2}}} \to \psi _{o,2}^{1}=&~\left \{{ {(1,4),(2,4)} }\right \} \\ \underbrace {(2,3)}_{{I_{o,3}}} \to \psi _{o,3}^{1}=&~\left \{{ {(1,3),(2,4)} }\right \} \\ \underbrace {(2,4)}_{{I_{o,4}}} \to \psi _{o,4}^{1}=&~\left \{{ {(1,4),(2,3)} }\right \}.\tag{39}\end{align*}
According to (35)–(38), the HD set \begin{align*} \underbrace {(1,3)}_{{I_{o,1}}} \to \lambda _{1}^{1}=&~2 \to {\mathbf {H}_{\lambda _{1}^{1}}} = (1,1) \\ \underbrace {(1,4)}_{{I_{o,2}}} \to \lambda _{1}^{2}=&~2 \to {\mathbf {H}_{\lambda _{1}^{2}}} = (1,1) \\ \underbrace {(2,3)}_{{I_{o,3}}} \to \lambda _{1}^{3}=&~2 \to {\mathbf {H}_{\lambda _{1}^{3}}} = (1,1) \\ \underbrace {(2,4)}_{{I_{o,4}}} \to \lambda _{1}^{4}=&~2 \to {\mathbf {H}_{\lambda _{1}^{4}}} = (1,1).\tag{40}\end{align*}
\begin{equation*} 00 \to (1,3),01 \to (1,4),10 \to (2,3),11 \to (2,4).\tag{41}\end{equation*}
2) Bit-to-TAC Mapping for $N_{t}=5, N_{u}=2$
Fig. 6 presents the bit-to-TAC mapping for the case of \begin{align*} \underbrace {(1,4)}_{{I_{o,1}}} \to \psi _{o,1}^{1}=&~\left \{{ {(1,3),(1,5),(2,4),(3,4)} }\right \} \\ \underbrace {(1,5)}_{{I_{o,2}}} \to \psi _{o,2}^{1}=&~\left \{{ {(1,3),(1,4),(2,5),(3,5)} }\right \} \\ \underbrace {(2,4)}_{{I_{o,3}}} \to \psi _{o,3}^{1}=&~\left \{{ {(1,4),(2,3),(2,5),(3,4)} }\right \} \\ \underbrace {(2,5)}_{{I_{o,4}}} \to \psi _{o,4}^{1}=&~\left \{{ {(1,5),(2,3),(2,4),(3,5)} }\right \} \\ \underbrace {(2,3)}_{{I_{o,5}}} \to \psi _{o,5}^{1}=&~\left \{{ {(1,3),(2,4),(2,5),(3,4),(3,5)} }\right \} \\ \underbrace {(1,3)}_{{I_{o,6}}} \to \psi _{o,6}^{1}=&~\left \{{ {(1,4),(1,5),(2,3),(3,4),(3,5)} }\right \} \\ \underbrace {(3,4)}_{{I_{o,7}}} \to \psi _{o,7}^{1}=&~\left \{{ {(1,3),(1,4),(2,3),(2,4),(3,5)} }\right \} \\ \underbrace {(3,5)}_{{I_{o,8}}} \to \psi _{o,8}^{1}=&~\left \{{ {(1,3),(1,5),(2,3),(2,5),(3,4)} }\right \}.\tag{42}\end{align*}
\begin{align*} \underbrace {(1,4)}_{{I_{o,1}}} \to \lambda _{1}^{1}=&~4 \to {\mathbf {H}_{\lambda _{1}^{1}}} = (1,1,1,2) \\ \underbrace {(1,5)}_{{I_{o,2}}} \to \lambda _{1}^{2}=&~4 \to {\mathbf {H}_{\lambda _{1}^{2}}} = (1,1,1,2) \\ \underbrace {(2,4)}_{{I_{o,3}}} \to \lambda _{1}^{3}=&~4 \to {\mathbf {H}_{\lambda _{1}^{3}}} = (1,1,1,2) \\ \underbrace {(2,5)}_{{I_{o,4}}} \to \lambda _{1}^{4}=&~4 \to {\mathbf {H}_{\lambda _{1}^{4}}} = (1,1,1,2) \\ \underbrace {(1,3)}_{{I_{o,5}}} \to \lambda _{1}^{5}=&~5 \to {\mathbf {H}_{\lambda _{1}^{5}}} = (1,1,1,2,2) \\ \underbrace {(2,3)}_{{I_{o,6}}} \to \lambda _{1}^{6}=&~5 \to {\mathbf {H}_{\lambda _{1}^{6}}} = (1,1,1,2,2) \\ \underbrace {(3,4)}_{{I_{o,7}}} \to \lambda _{1}^{7}=&~5 \to {\mathbf {H}_{\lambda _{1}^{7}}} = (1,1,1,2,2) \\ \underbrace {(3,5)}_{{I_{o,8}}} \to \lambda _{1}^{8}=&~5 \to {\mathbf {H}_{\lambda _{1}^{8}}} = (1,1,1,2,2).\tag{43}\end{align*}
Hence, the general bit-to-TAC mapping principle is based on the values of
Initialize
Step 1:
The bit-to-TAC mapping begins from
. Since the TAC mapping should satisfy Eq. (43), we have$\psi _{o,1}^{1}$ .$(1,5) \in \{ 010,011,100,101\}$ Step 2:
If
, we have$(1,5) \to 010$ and${\mathbf {H}_{\lambda _{1}^{1}}}=(1,2)$ . According to Eq. (43), we have${\mathbf {H}_{\lambda _{1}^{2}}}=(1,2)$ and$(2,4),(3,4) \in \{ 101,011\}$ . The bits set {011, 101, 110} should be mapped to four TACs (2, 4), (3, 4), (2, 5), (3, 5), resulting in mapping errors. Hence,$(2,5),(3,5) \in \{ 011,110\}$ cannot be mapped to (1, 5).$'010'$ Step 3:
If
, we have$(1,5) \to 011$ and${\mathbf {H}_{\lambda _{1}^{1}}}=(1,1)$ . According to (42)–(43), we have${\mathbf {H}_{\lambda _{1}^{2}}}=(1,2)$ and the following expressions can be formulated$(2,5),(3,5) \in \{ 010,111\}$ \begin{align*} \underbrace {(1,4)}_{001} \to \psi _{o,1}^{1}=&~\{ {\underbrace {(1,3)}_{000 \to 1},\underbrace {(1,5)}_{011 \to 1},(2,4),(3,4)} \} \\ \underbrace {(1,5)}_{011} \to \psi _{o,2}^{1}=&~\{ {\underbrace {(1,3)}_{000 \to 2},\underbrace {(1,4)}_{001 \to 1},\underbrace {(2,5)}_{010/111},\underbrace {(3,5)}_{010/111}} \}.\tag{44}\end{align*} View Source\begin{align*} \underbrace {(1,4)}_{001} \to \psi _{o,1}^{1}=&~\{ {\underbrace {(1,3)}_{000 \to 1},\underbrace {(1,5)}_{011 \to 1},(2,4),(3,4)} \} \\ \underbrace {(1,5)}_{011} \to \psi _{o,2}^{1}=&~\{ {\underbrace {(1,3)}_{000 \to 2},\underbrace {(1,4)}_{001 \to 1},\underbrace {(2,5)}_{010/111},\underbrace {(3,5)}_{010/111}} \}.\tag{44}\end{align*}
Step 4:
The bit-to-TAC mapping continues from the TAC (2, 5). If
, we have$(2,5)\to 010$ Then we should have\begin{equation*} \underbrace {(2,5)}_{010} \to \psi _{o,4}^{1} = \{ \underbrace {(1,5)}_{011 \to 1},\underbrace {(2,3)}_{110 \to 1},\underbrace {(2,4)}_{000 \to 1},\underbrace {(3,5)}_{111 \to 2}\}.\tag{45}\end{equation*} View Source\begin{equation*} \underbrace {(2,5)}_{010} \to \psi _{o,4}^{1} = \{ \underbrace {(1,5)}_{011 \to 1},\underbrace {(2,3)}_{110 \to 1},\underbrace {(2,4)}_{000 \to 1},\underbrace {(3,5)}_{111 \to 2}\}.\tag{45}\end{equation*}
in order to satisfy Eq. (43), which is the same as$(2,4)\to 000$ . Hence, (2, 5) cannot be mapped to 010 and the bit-to-TAC mapping starts from$(1,3)\to 000$ as$(2,5)\to 111$ \begin{equation*} \underbrace {(2,5)}_{111} \to \psi _{o,4}^{1} = \{ \underbrace {(1,5)}_{011 \to 1},\underbrace {(2,3)}_{110/101},\underbrace {(2,4)}_{110/101},\underbrace {(3,5)}_{010 \to 2}\}.\tag{46}\end{equation*} View Source\begin{equation*} \underbrace {(2,5)}_{111} \to \psi _{o,4}^{1} = \{ \underbrace {(1,5)}_{011 \to 1},\underbrace {(2,3)}_{110/101},\underbrace {(2,4)}_{110/101},\underbrace {(3,5)}_{010 \to 2}\}.\tag{46}\end{equation*}
Step 5:
According to (46), the bit-to-TAC mapping continues from the TAC (2, 4). If
, the HD between (2, 4) and (1, 4) is 3, so that we have$(2,4)\to 110$ and the following expressions can be formulated$(2,4)\to 101$ Finally, as shown in Fig. 6, the bit-to-TAC mapping for the case of\begin{align*} \underbrace {(2,5)}_{111} \to \psi _{o,4}^{1}=&~\{ \underbrace {(1,5)}_{011 \to 1},\underbrace {(2,3)}_{110 \to 1},\underbrace {(2,4)}_{101 \to 1},\underbrace {(3,5)}_{010 \to 2}\} \\ \underbrace {(1,4)}_{001} \to \psi _{o,1}^{1}=&~\{ {\underbrace {(1,3)}_{000 \to 1},\underbrace {(1,5)}_{011 \to 1},\underbrace {(2,4)}_{101 \to 1},\underbrace {(3,4)}_{100 \to 2}} \} \\ \underbrace {(2,4)}_{101} \to \psi _{o,3}^{1}=&~\{ \underbrace {(1,4)}_{001 \to 1},\underbrace {(2,3)}_{110 \to 2},\underbrace {(2,5)}_{111 \to 1},\underbrace {(3,4)}_{100 \to 1}\}.\tag{47}\end{align*} View Source\begin{align*} \underbrace {(2,5)}_{111} \to \psi _{o,4}^{1}=&~\{ \underbrace {(1,5)}_{011 \to 1},\underbrace {(2,3)}_{110 \to 1},\underbrace {(2,4)}_{101 \to 1},\underbrace {(3,5)}_{010 \to 2}\} \\ \underbrace {(1,4)}_{001} \to \psi _{o,1}^{1}=&~\{ {\underbrace {(1,3)}_{000 \to 1},\underbrace {(1,5)}_{011 \to 1},\underbrace {(2,4)}_{101 \to 1},\underbrace {(3,4)}_{100 \to 2}} \} \\ \underbrace {(2,4)}_{101} \to \psi _{o,3}^{1}=&~\{ \underbrace {(1,4)}_{001 \to 1},\underbrace {(2,3)}_{110 \to 2},\underbrace {(2,5)}_{111 \to 1},\underbrace {(3,4)}_{100 \to 1}\}.\tag{47}\end{align*}
and$N_{t}=5$ is given by$N_{u}=2$ \begin{align*} 000\to&~(1,3),001 \to (1,4),010 \to (3,5),011 \to (1,5) \\ 100\to&~(3,4),101 \to (2,4),110 \to (2,3),111 \to (2,5). \\\tag{48}\end{align*} View Source\begin{align*} 000\to&~(1,3),001 \to (1,4),010 \to (3,5),011 \to (1,5) \\ 100\to&~(3,4),101 \to (2,4),110 \to (2,3),111 \to (2,5). \\\tag{48}\end{align*}
3) Bit-to-TAC Mapping for Generalized Cases
Based on the bit-to-TAC mapping of the above specific examples, the generalized bit-to-TAC mapping is formulated as follows.
Step 1:
Obtain the TAC set
and the HD set${\mathbb {I}_{o}}$ according to (34) and (38).$\mathbb {H}$ Step 2:
For each TAC
, obtain the set$I_{o,i}\in {\mathbb {I}_{o}}$ and the value$\psi _{o,i}^{N_{u}-1}$ according to (34).${\lambda _{1}^{i}}$ Step 3:
Obtain the HD set
according to (38).${{\mathbf {H}_{\lambda _{1}^{i}}}}$ Step 4:
Complete the bit-to-TAC mapping based on
,$I_{o,i}\in {\mathbb {I}_{o}}$ ,$\psi _{o,i}^{N_{u}-1}$ with${{\mathbf {H}_{\lambda _{1}^{i}}}}$ .$D_{\bar \varsigma _{1}}^{i}$
Assuming that \begin{align*} (1,3)\to&~000,(1,4) \to 001,(1,5) \to 010,(1,6) \to 011 \\ (2,3)\to&~100,(2,4) \to 101,(2,5) \to 110,(2,6) \to 111. \\\tag{49}\end{align*}
Algorithm 1 Bit-to-TAC Mapping Based the Obtained TAC Set $\mathbb{I}_{o}$
For the TAC
for
Update
if
break;
else
end if
For the TAC
for
Update
if
break;
else
end if
end for
Get the possible bits set
for
end for
Get the possible bits set
for
end for
end for
In order to provide further insights, we compare the AHD of the proposed HM-GSM system to that of the C-GSM system in Table 4. Observe from Table 4 that the proposed HM-GSM scheme is capable of attaining a significantly lower AHD
Enhanced High Throughput GSM
In the above section, we have analyzed how to choose an optimal TAC set from the entire TAC set space, which is capable of providing a performance gain over the C-GSM system. In this section we discuss, how to exploiting the remaining TACs to increase the throughput.
A. Proposed E-HT-GSM System
In the C-GSM system, only
Step 1:
Determine the number of bits that the conventional TAC index conveys as
\begin{equation*} R_{c}={\lfloor \log _{2}(C_{N_{t}}^{N_{u}})\rfloor }\tag{50}\end{equation*} View Source\begin{equation*} R_{c}={\lfloor \log _{2}(C_{N_{t}}^{N_{u}})\rfloor }\tag{50}\end{equation*}
Step 2:
Extend the number of bits conveyed to
Then the total number of TAC required by the proposed E-HT-GSM scheme becomes\begin{equation*} R_{p}={\lfloor \log _{2}(C_{N_{t}}^{N_{u}})\rfloor }+1.\tag{51}\end{equation*} View Source\begin{equation*} R_{p}={\lfloor \log _{2}(C_{N_{t}}^{N_{u}})\rfloor }+1.\tag{51}\end{equation*}
.$N^{'}=2^{R_{p}}$ Step 3:
Naturally, we can only arrange for
bits be conveyed, if$R_{p}$ TACs are reused randomly and distinguishing rotated phase$(N^{'}-C_{N_{t}}^{N_{u}})$ is employed for the reused TACs. The extended TAC set becomes$\theta$ .$\mathbb {I}_{\text {high}}=[\mathbb {I}_{\text {all}}, \mathbb {I}_{\text {repeat}}]$ Step 4:
GSM mapping utilizing the extended TAC set
.$\mathbb {I}_{\text {high}}$
Let us consider \begin{equation*} \mathbb {I}_{\text {all}}=\left \{{ {\left [{ {\begin{array}{*{20}{c}} 1 \\ 1 \\ 0 \\ 0 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \\ 0 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 0 \\ 1 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} 0 \\ 1 \\ 1 \\ 0 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} 0 \\ 1 \\ 0 \\ 1 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \\ 1 \end{array}} }\right]} }\right \}\!.\tag{52}\end{equation*}
When reusing the two TACs \begin{equation*} {\mathbb {I}}{_{{\mathrm {repeat}}}}=\left \{{ {\left [{ {\begin{array}{*{20}{c}} 1\\ 1\\ 0\\ 0 \end{array}} }\right]{e^{j\theta }}\left [{ {\begin{array}{*{20}{c}} 0\\ 0\\ 1\\ 1 \end{array}} }\right]{e^{j\theta }}} }\right \}\!.\tag{53}\end{equation*}
According to (20) and (21), the extended TAC set is given by \begin{align*} {\mathbb {I}_{\text {high}}}=&~\Biggl \{{ {\left [{ {\begin{array}{*{20}{c}} 1 \\ 1 \\ 0 \\ 0 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \\ 0 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 0 \\ 1 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} 0 \\ 1 \\ 1 \\ 0 \end{array}} }\right]\!,} } \\&\qquad ~\qquad { {\left [{ {\begin{array}{*{20}{c}} 0 \\ 1 \\ 0 \\ 1 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \\ 1 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} {{e^{j\theta }}} \\ {{e^{j\theta }}} \\ 0 \\ 0 \end{array}} }\right],\left [{ {\begin{array}{*{20}{c}} 0 \\ 0 \\ {{e^{j\theta }}} \\ {{e^{j\theta }}} \end{array}} }\right]} }\Biggr \}\!.\tag{54}\end{align*}
B. The Optimization of $\theta$
In this section, the value of \begin{equation*} \delta _{\min }(\mathbf {x}_{i},\mathbf {x}_{j})=\min _{\mathbf {x}_{i},\mathbf {x}_{j}}\det (\mathbf {x}_{i}-\mathbf {x}_{j})(\mathbf {x}_{i}-\mathbf {x}_{j})^{H}.\tag{55}\end{equation*}
Both
and$\mathbf {x}_{i}$ are independent of$\mathbf {x}_{j}$ . In this case, the value of$\theta$ is independent of$\delta _{\min }(\mathbf {x}_{i},\mathbf {x}_{j})$ as well;$\theta$ Both
and$\mathbf {x}_{i}$ are associated with the$\mathbf {x}_{j}$ . In this case, the calculation is the same as the scenario 1);$\theta$ is independent of$\mathbf {x}_{i}$ and$\theta$ is associated with$\mathbf {x}_{j}$ ;$\theta$ is associated with$\mathbf {x}_{i}$ and$\theta$ is independent of$\mathbf {x}_{j}$ .$\theta$
Case 1:
All the activate antenna indices of
and$\mathbf {x}_{i}$ are the same. Assuming$\mathbf {x}_{j}$ ,$l_{1}=\hat l_{1}=1$ ,$l_{2}=\hat l_{2}=2$ , and$\mathbf x_{i}=\left[{\begin{matrix}s_{1}&s_{2}&\mathbf {0}_{2\times (N_{t}-2)}\\ \end{matrix}}\right]^{T}$ for example, the MD between$\mathbf x_{j}=\left[{\begin{matrix}\hat s_{1}&\hat s_{2}&\mathbf {0}_{2\times (N_{t}-2)} \end{matrix}}\right]^{T}e^{j\theta }$ and$\mathbf {x}_{i}$ obeys$\mathbf {x}_{j}$ \begin{align*} \delta _{\min }(\mathbf x_{i},\mathbf x_{j})=&~\min _{\mathbf x_{i},\mathbf x_{j}}\det (\mathbf x_{i}-\mathbf x_{j})(\mathbf x_{i}-\mathbf x_{j})^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det \left({\begin{matrix}s_{1}-\hat {s}_{1}e^{j\theta }&s_{2}-\hat {s}_{2}e^{j\theta }&\mathbf {0}_{2\times (N_{t}-2)} \end{matrix}}\right) \\&\times \left({\begin{matrix}s_{1}-\hat {s}_{1}e^{j\theta }&s_{2}-\hat {s}_{2}e^{j\theta }&\mathbf {0}_{2\times (N_{t}-2)} \end{matrix}}\right)^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det (||s_{1}||^{2}+||s_{2}||^{2}+||\hat {s}_{1}||^{2}+||\hat {s}_{2}||^{2} \\&-\,(s_{1}\hat {s}_{1}^{*}+s_{2}\hat {s}_{2}^{*})e^{j\theta }-(s_{1}^{*}\hat {s}_{1}+s_{2}^{*}\hat {s}_{2})e^{j\theta }).\tag{56}\end{align*} View Source\begin{align*} \delta _{\min }(\mathbf x_{i},\mathbf x_{j})=&~\min _{\mathbf x_{i},\mathbf x_{j}}\det (\mathbf x_{i}-\mathbf x_{j})(\mathbf x_{i}-\mathbf x_{j})^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det \left({\begin{matrix}s_{1}-\hat {s}_{1}e^{j\theta }&s_{2}-\hat {s}_{2}e^{j\theta }&\mathbf {0}_{2\times (N_{t}-2)} \end{matrix}}\right) \\&\times \left({\begin{matrix}s_{1}-\hat {s}_{1}e^{j\theta }&s_{2}-\hat {s}_{2}e^{j\theta }&\mathbf {0}_{2\times (N_{t}-2)} \end{matrix}}\right)^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det (||s_{1}||^{2}+||s_{2}||^{2}+||\hat {s}_{1}||^{2}+||\hat {s}_{2}||^{2} \\&-\,(s_{1}\hat {s}_{1}^{*}+s_{2}\hat {s}_{2}^{*})e^{j\theta }-(s_{1}^{*}\hat {s}_{1}+s_{2}^{*}\hat {s}_{2})e^{j\theta }).\tag{56}\end{align*}
Case 2:
Only a single activated antenna index of
and$\mathbf {x}_{i}$ is the same. Assuming$\mathbf {x}_{j}$ ,$s1=1,\hat l_{1}=2$ ,$l_{2}=1,\hat l_{2}=3$ , and$\mathbf x_{i}=\left[{\begin{matrix}s_{1}&s_{2}&\mathbf {0}_{2\times (N_{t}-2)}\\ \end{matrix}}\right]^{T}$ for example, the MD between$\mathbf x_{j}=\left[{\begin{matrix}\hat s_{1}&0&\hat s_{2}&\mathbf {0}_{2\times (N_{t}-3)} \end{matrix}}\right]^{T}e^{j\theta }$ and$\mathbf {x}_{i}$ obeys$\mathbf {x}_{j}$ \begin{align*} \delta _{\min }(\mathbf x_{i},\mathbf x_{j})=&~\min _{\mathbf x_{i},\mathbf x_{j}}\det (\mathbf x_{i}-\mathbf x_{j})(\mathbf x_{i}-\mathbf x_{j})^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det \left({\begin{matrix}s_{1}-\hat {s}_{1}e^{j\theta }&s_{2}&-\hat {s}_{2}e^{j\theta }&\mathbf {0}_{2\times (N_{t}-2)} \end{matrix}}\right) \\&\times \left({\begin{matrix}s_{1}-\hat {s}_{1}e^{j\theta }&s_{2}&-\hat {s}_{2}e^{j\theta }&\mathbf {0}_{2\times (N_{t}-3)} \end{matrix}}\right)^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det (||s_{1}||^{2}+||s_{2}||^{2}+||\hat {s}_{1}||^{2}+||\hat {s}_{2}||^{2} \\&-\,s_{1}\hat {s}_{1}^{*}e^{j\theta }+s_{1}^{*}\hat {s}_{1}e^{j\theta }).\tag{57}\end{align*} View Source\begin{align*} \delta _{\min }(\mathbf x_{i},\mathbf x_{j})=&~\min _{\mathbf x_{i},\mathbf x_{j}}\det (\mathbf x_{i}-\mathbf x_{j})(\mathbf x_{i}-\mathbf x_{j})^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det \left({\begin{matrix}s_{1}-\hat {s}_{1}e^{j\theta }&s_{2}&-\hat {s}_{2}e^{j\theta }&\mathbf {0}_{2\times (N_{t}-2)} \end{matrix}}\right) \\&\times \left({\begin{matrix}s_{1}-\hat {s}_{1}e^{j\theta }&s_{2}&-\hat {s}_{2}e^{j\theta }&\mathbf {0}_{2\times (N_{t}-3)} \end{matrix}}\right)^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det (||s_{1}||^{2}+||s_{2}||^{2}+||\hat {s}_{1}||^{2}+||\hat {s}_{2}||^{2} \\&-\,s_{1}\hat {s}_{1}^{*}e^{j\theta }+s_{1}^{*}\hat {s}_{1}e^{j\theta }).\tag{57}\end{align*}
Case 3:
None of the activated antenna indices are the same. Considering
According to (59), we have ,$l_{1}=1,\hat l_{1}=2$ ,$l_{2}=3,\hat l_{2}=4$ , and$\mathbf x_{i}=\left ({\begin{matrix}s_{1}&s_{2}&\mathbf {0}_{2\times (N_{t}-2)}\\ \end{matrix}}\right)$ for example, the MD between$\mathbf x_{j}=\left ({\begin{matrix} 0&0&\hat s_{1}&\hat s_{2}&\mathbf {0}_{2\times (N_{t}-4)} \end{matrix}}\right)e^{j\theta }$ and$\mathbf {x}_{i}$ obeys$\mathbf {x}_{j}$ As a result, the values of\begin{align*}&\hspace {-2pc}\delta _{\min }(\mathbf x_{i},\mathbf x_{j}) \\=&~\min _{\mathbf x_{i},\mathbf x_{j}}\det (\mathbf x_{i}-\mathbf x_{j})(\mathbf x_{i}-\mathbf x_{j})^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det \left({\begin{matrix}s_{1}&\quad s_{2}&\quad -\hat {s}_{1}e^{j\theta }&-\hat {s}_{2}e^{j\theta }&\quad \mathbf {0}_{2\times (N_{t}-4)} \end{matrix}}\right) \\&\times \left({\begin{matrix}s_{1}&\quad s_{2}&\quad -\hat {s}_{1}e^{j\theta }&\quad -\hat {s}_{2}e^{j\theta }&\quad \mathbf {0}_{2\times (N_{t}-4)} \end{matrix}}\right)^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det (||s_{1}||^{2}+||s_{2}||^{2}+||\hat {s}_{1}||^{2}+||\hat {s}_{2}||^{2}).\tag{58}\end{align*} View Source\begin{align*}&\hspace {-2pc}\delta _{\min }(\mathbf x_{i},\mathbf x_{j}) \\=&~\min _{\mathbf x_{i},\mathbf x_{j}}\det (\mathbf x_{i}-\mathbf x_{j})(\mathbf x_{i}-\mathbf x_{j})^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det \left({\begin{matrix}s_{1}&\quad s_{2}&\quad -\hat {s}_{1}e^{j\theta }&-\hat {s}_{2}e^{j\theta }&\quad \mathbf {0}_{2\times (N_{t}-4)} \end{matrix}}\right) \\&\times \left({\begin{matrix}s_{1}&\quad s_{2}&\quad -\hat {s}_{1}e^{j\theta }&\quad -\hat {s}_{2}e^{j\theta }&\quad \mathbf {0}_{2\times (N_{t}-4)} \end{matrix}}\right)^{H} \\=&~\min _{s_{1},\hat s_{1},s_{2},\hat s_{2}}\det (||s_{1}||^{2}+||s_{2}||^{2}+||\hat {s}_{1}||^{2}+||\hat {s}_{2}||^{2}).\tag{58}\end{align*}
for the three cases can be summarized as (59), as shown at the bottom of the next page.$\delta _{\min }(\mathbf x_{i},\mathbf x_{j})$ To provide further insights, Fig. 7 shows the value of\begin{align*} \delta _{\min }(\mathbf {x}_{i},\mathbf {x}_{j})=&~\min _{x_{ij},\hat {x}_{ij}}\det (||s_{1}||^{2}+||s_{2}||^{2}+||\hat {s}_{1}||^{2}+||\hat {s}_{2}||^{2} \\&-\,(s_{1}\hat {s}_{1}^{*}+s_{2}\hat {s}_{2}^{*})e^{j\theta }-(s_{1}^{*}\hat {s}_{1}+s_{2}^{*}\hat {s}_{2})e^{j\theta }).\tag{60}\end{align*} View Source\begin{align*} \delta _{\min }(\mathbf {x}_{i},\mathbf {x}_{j})=&~\min _{x_{ij},\hat {x}_{ij}}\det (||s_{1}||^{2}+||s_{2}||^{2}+||\hat {s}_{1}||^{2}+||\hat {s}_{2}||^{2} \\&-\,(s_{1}\hat {s}_{1}^{*}+s_{2}\hat {s}_{2}^{*})e^{j\theta }-(s_{1}^{*}\hat {s}_{1}+s_{2}^{*}\hat {s}_{2})e^{j\theta }).\tag{60}\end{align*}
in (60) for BPSK, QPSK, 16 QAM and 64-QAM in conjunction with different$\delta _{\min }(\mathbf {x}_{i}, \mathbf {x}_{j})$ . If$\theta$ , as seen from Fig. 7,$\theta \in [0, \pi /2]$ can be optimized by maximizing the value of$\theta$ in (60) as$\delta _{\min }(\mathbf {x}_{i}, \mathbf {x}_{j})$ \begin{align*} \theta =\! {\begin{cases} \displaystyle \frac {\pi }{2},&\quad {\mathrm {BPSK}}\\[6pt] \displaystyle \frac {\pi }{4},&\quad {\mathrm {QPSK}}\\[6pt] \displaystyle \frac {\pi }{7} {~\text {or }} \left ({{\displaystyle \frac {\pi }{2} - \displaystyle \frac {\pi }{7}} }\right),&\quad {\mathrm { 16QAM}}\\[6pt] \displaystyle \frac {\pi }{16} {~\text {or }} \left ({{\displaystyle \frac {\pi }{2} - \displaystyle \frac {\pi }{16}} }\right),&\quad {\mathrm {64QAM}}. \end{cases}}\tag{61}\end{align*} View Source\begin{align*} \theta =\! {\begin{cases} \displaystyle \frac {\pi }{2},&\quad {\mathrm {BPSK}}\\[6pt] \displaystyle \frac {\pi }{4},&\quad {\mathrm {QPSK}}\\[6pt] \displaystyle \frac {\pi }{7} {~\text {or }} \left ({{\displaystyle \frac {\pi }{2} - \displaystyle \frac {\pi }{7}} }\right),&\quad {\mathrm { 16QAM}}\\[6pt] \displaystyle \frac {\pi }{16} {~\text {or }} \left ({{\displaystyle \frac {\pi }{2} - \displaystyle \frac {\pi }{16}} }\right),&\quad {\mathrm {64QAM}}. \end{cases}}\tag{61}\end{align*}
The values of
Simulation Results
In this section, the performances of the proposed E-GSM, HM-GSM and E-HT-GSM schemes are presented and compared under different antenna configurations. In all the simulation results, perfect channel state information is assumed and the values of the specific
Performance comparison of the proposed schemes and of the conventional GSM systems using
Performance comparison of the proposed schemes and of the conventional GSM systems using
Performance comparison of the proposed schemes and of the conventional GSM systems using
Complexity comparison of the proposed schemes and of the conventional GSM system using
Performance comparison of the proposed schemes and of the conventional GSM systems using
Performance comparison of the proposed schemes and of the conventional GSM systems using
Performance comparisons of the QPSK-aided E-HT-GSM systems and of the QPSK-aided C-GSM systems using
Specifically, Figs. 8–10 compare the performances of both the proposed E-GSM, and of the HM-GSM systems to the C-GSM system using
In order to provide further insights, Figs. 12–13 compare the performances of the proposed E-GSM, HM-GSM to the C-GSM system using
Finally, Fig. 14 compares the performance of the proposed E-HT-GSM system to that of the C-GSM system at different transmission rates. Specifically, for the C-GSM system, we employ QPSK modulation for the cases of
Conclusions
The problem of TAC set optimization has been investigated. Firstly, a low-complexity TAC selection algorithm relying on CSI knowledge was designed for our E-GSM systems. Then, hybrid bit-to-TAC mapping based TAC optimization operating without CSI knowledge was designed for the GSM system. The proposed E-GSM system and HM-GSM system are capable of outperforming the C-GSM system at a negligible extra complexity, while the proposed E-HT-GSM system conceived is capable of increasing the throughput per time slot by one bit at a negligible performance loss.