Abstract:
A cooperative cognitive radio for satellite networks is considered, in which the primary network is a satellite network and the secondary network is a cellular network. D...Show MoreMetadata
Abstract:
A cooperative cognitive radio for satellite networks is considered, in which the primary network is a satellite network and the secondary network is a cellular network. Due to the lack of multipath in a satellite environment, the channel matrices of the satellite network are assumed to be rank-deficient, which implies that the capacity cannot be increased in proportion to the number of antennas. To overcome the rank deficiency, we propose a novel cooperative transmission strategy where the base station or mobile users in the cellular network both help the communication of the satellite network and transmit and receive their own streams. Not only does the secondary network carefully adjust the number of transmitted streams to avoid causing interference to the primary network beyond a certain threshold; it also provides alternative signal paths for the primary network, thereby effectively increasing the channel ranks of the primary network. We obtain both the achievable sum degrees of freedom (DoFs) and the sum rate under the proposed scheme, and we also derive upper bounds on the sum DoF. Using the analytical and numerical analysis, we show that our scheme significantly improves the overall system throughput compared with the satellite network alone, without cognitive access.
Published in: IEEE Transactions on Communications ( Volume: 66, Issue: 11, November 2018)
Funding Agency:
References is not available for this document.
Select All
1.
D. J. Bem, T. W. Wieckowski and R. J. Zielinski, "Broadband satellite systems", IEEE Commun. Surveys Tuts., vol. 3, no. 1, pp. 2-15, 1st Quart. 2000.
2.
B. Evans, O. Onireti, T. Spathopoulos and M. A. Imran, "The role of satellites in 5G", Proc. EUSIPCO, pp. 2756-2760, Aug./Sep. 2015.
3.
M. Jia, X. Gu, Q. Guo, W. Xiang and N. Zhang, "Broadband hybrid satellite-terrestrial communication systems based on cognitive radio toward 5G", IEEE Wireless Commun., vol. 23, no. 6, pp. 96-106, Dec. 2016.
4.
M. Shafi et al., "5G: A tutorial overview of standards trials challenges deployment and practice", IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201-1221, Jun. 2017.
5.
G. Araniti, I. Bisio, M. De Sanctis, A. Orsino and J. Cosmas, "Multimedia content delivery for emerging 5G-satellite networks", IEEE Trans. Broadcast., vol. 62, no. 1, pp. 10-23, Mar. 2016.
6.
J. Zhang, X. Zhang, M. A. Imran, B. Evans, Y. Zhang and W. Wang, "Energy efficient hybrid satellite terrestrial 5G networks with software defined features", J. Commun. Netw., vol. 19, no. 2, pp. 147-161, Apr. 2017.
7.
J. Mitola and G. Q. Maguire, "Cognitive radio: Making software radios more personal", IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, Apr. 1999.
8.
S. Haykin, "Cognitive radio: Brain-empowered wireless communications", IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201-220, Feb. 2005.
9.
L. Musavian and S. Aïssa, "Capacity and power allocation for spectrum-sharing communications in fading channels", IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 148-156, Jan. 2009.
10.
L. Musavian and S. Aissa, "Fundamental capacity limits of cognitive radio in fading environments with imperfect channel information", IEEE Trans. Commun., vol. 57, no. 11, pp. 3472-3480, Nov. 2009.
11.
V. Asghari and S. Aïssa, "Adaptive rate and power transmission in spectrum-sharing systems", IEEE Trans. Wireless Commun., vol. 9, no. 10, pp. 3272-3280, Oct. 2010.
12.
B. Makki, A. Graell i Amat and T. Eriksson, "HARQ feedback in spectrum sharing networks", IEEE Commun. Lett., vol. 16, no. 9, pp. 1337-1340, Sep. 2012.
13.
M. J. Abdel-Rahman, M. Krunz and R. Erwin, "Exploiting cognitive radios for reliable satellite communications", Int. J. Satell. Commun. Netw., vol. 33, no. 3, pp. 197-216, May/Jun. 2015.
14.
M. Jia, X. Liu, Z. Yin, Q. Guo and X. Gu, "Joint cooperative spectrum sensing and spectrum opportunity for satellite cluster communication networks", Ad Hoc Netw., vol. 58, pp. 231-238, Apr. 2017.
15.
K. An, M. Lin, J. Ouyang, Y. Huang and G. Zheng, "Symbol error analysis of hybrid satellite–terrestrial cooperative networks with cochannel interference", IEEE Commun. Lett., vol. 18, no. 11, pp. 1947-1950, Nov. 2014.
16.
N. Varshney and A. K. Jagannatham, "Hybrid satellite-terrestrial cooperative communication with mobile terrestrial nodes", Proc. 24th Nat. Conf. Commun. Conf. (NCC), pp. 1-6, Feb. 2018.
17.
Y.-J. Bu, M. Lin, K. An, J. Ouyang and C. Yuan, "Performance analysis of hybrid satellite–terrestrial cooperative systems with fixed gain relaying", Wireless Pers. Commun., vol. 89, no. 2, pp. 427-445, Jul. 2016.
18.
N. Varshney and A. K. Jagannatham, "A unified framework for the analysis of path selection based DF cooperation in wireless systems", Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), pp. 1-6, Mar. 2017.
19.
S. Kandeepan, L. De Nardis, M.-G. Di Benedetto, A. Guidotti and G. E. Corazza, "Cognitive satellite terrestrial radios", Proc. IEEE Global Telecommun. Conf., pp. 1-6, Dec. 2010.
20.
S. K. Sharma et al., "Satellite cognitive communications: Interference modeling and techniques selection", Proc. 6th ASMS 12th SPSC, pp. 111-118, Sep. 2012.
21.
A. Guidotti, D. Tarchi, V. Icolari, A. Vanelli-Coralli and G. E. Corazza, "Spectrum awareness techniques for 5G satellite communications", Proc. EUSIPCO, pp. 2761-2765, Aug./Sep. 2015.
22.
K. An, M. Lin, W.-P. Zhu, Y. Huang and G. Zheng, "Outage performance of cognitive hybrid satellite–terrestrial networks with interference constraint", IEEE Trans. Veh. Technol., vol. 65, no. 11, pp. 9397-9404, Nov. 2016.
23.
F. Guidolin and M. Nekovee, "Investigating spectrum sharing between 5G millimeter wave networks and fixed satellite systems", Proc. IEEE Globecom Workshops (GC Wkshps), pp. 1-7, Dec. 2015.
24.
G. J. Foschini and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas", Wireless Pers. Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998.
25.
İ. E. Telatar, "Capacity of multi-antenna Gaussian channels", Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585-595, Nov. 1999.
26.
V. Joroughi, M. Á. Vázquez and A. I. Pérez-Neira, "Generalized multicast multibeam precoding for satellite communications", IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 952-966, Feb. 2017.
27.
P.-D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis and R. De Gaudenzi, "MIMO over satellite: A review", IEEE Commun. Surveys Tuts., vol. 13, no. 1, pp. 27-51, 1st Quart. 2011.
28.
V. Joroughi, M. Á. Vázquez and A. I. Pérez-Neira, "Precoding in multigateway multibeam satellite systems", IEEE Trans. Wireless Commun., vol. 15, no. 7, pp. 4944-4956, Jul. 2016.
29.
D. Chizhik, G. J. Foschini, M. J. Gans and R. A. Valenzuela, "Keyholes correlations and capacities of multielement transmit and receive antennas", IEEE Trans. Wireless Commun., vol. 1, no. 2, pp. 361-368, Apr. 2002.
30.
D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge, U.K.:Cambridge Univ. Press, 2005.