Abstract:
In this paper, an architecture of dynamic fuzzy neural networks (D-FNN) implementing Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial basis function (RBF) ...Show MoreMetadata
Abstract:
In this paper, an architecture of dynamic fuzzy neural networks (D-FNN) implementing Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial basis function (RBF) neural networks is proposed. A novel learning algorithm based on D-FNN is also presented. The salient characteristics of the algorithm are: 1) hierarchical on-line self-organizing learning is used; 2) neurons can be recruited or deleted dynamically according to their significance to the system's performance; and 3) fast learning speed can be achieved. Simulation studies and comprehensive comparisons with some other learning algorithms demonstrate that a more compact structure with higher performance can be achieved by the proposed approach.
Published in: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) ( Volume: 30, Issue: 2, April 2000)
DOI: 10.1109/3477.836384