Loading [MathJax]/extensions/MathZoom.js
X-View: Graph-Based Semantic Multi-View Localization | IEEE Journals & Magazine | IEEE Xplore

X-View: Graph-Based Semantic Multi-View Localization


Abstract:

Global registration of multiview robot data is a challenging task. Appearance-based global localization approaches often fail under drastic view-point changes, as represe...Show More

Abstract:

Global registration of multiview robot data is a challenging task. Appearance-based global localization approaches often fail under drastic view-point changes, as representations have limited view-point invariance. This letter is based on the idea that human-made environments contain rich semantics that can be used to disambiguate global localization. Here, we present X-View, a multiview semantic global localization system. X-View leverages semantic graph descriptor matching for global localization, enabling localization under drastically different view-points. While the approach is general in terms of the semantic input data, we present and evaluate an implementation on visual data. We demonstrate the system in experiments on the publicly available SYNTHIA dataset, on a realistic urban dataset recorded with a simulator, and on real-world StreetView data. Our findings show that X-View is able to globally localize aerial-to-ground, and ground-to-ground robot data of drastically different view-points. Our approach achieves an accuracy of up to 85% on global localizations in the multiview case, while the benchmarked baseline appearance-based methods reach up to 75%.
Published in: IEEE Robotics and Automation Letters ( Volume: 3, Issue: 3, July 2018)
Page(s): 1687 - 1694
Date of Publication: 05 February 2018

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Global localization between heterogeneous robots is a difficult problem for classic place-recognition approaches. Visual appearance-based approaches such as [1], [2] are currently among the most effective methods for re-localization. However, they tend to significantly degrade with appearance changes due to different time, weather, season, and also view-point [3], [4]. In addition, when using different sensor modalities, the key-point extraction becomes an issue as they are generated from different physical and geometrical properties, for instance intensity gradients in images vs. high-curvature regions in point clouds.

Select All
1.
M. Cummins and P. Newman, "Fab-map: Probabilistic localization and mapping in the space of appearance", Int. J. Robot. Res., vol. 27, no. 6, pp. 647-665, 2008.
2.
D. Gálvez-López and J. D. Tardos, "Bags of binary words for fast place recognition in image sequences", IEEE Trans. Robot., vol. 28, no. 5, pp. 1188-1197, Oct. 2012.
3.
S. Lowry et al., "Visual place recognition: A survey", IEEE Trans. Robot., vol. 32, no. 1, pp. 1-19, Feb. 2016.
4.
R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla and J. Sivic, "Netvlad: Cnn architecture for weakly supervised place recognition", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 5297-5307, 2016.
5.
A. Gawel, T. Cieslewski, R. Dubé, M. Bosse, R. Siegwart and J. Nieto, "Structure-based vision-laser matching", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 182-188, 2016.
6.
A. Gawel, R. Dubé, H. Surmann, J. Nieto, R. Siegwart and C. Cadena, "3D registration of aerial and ground robots for disaster response: An evaluation of features descriptors and transformation estimation", Proc. IEEE Int. Symp. Safety Security, pp. 27-34, 2017.
7.
Z. Chen et al., "Deep learning features at scale for visual place recognition", Proc. IEEE Int. Conf. Robot. Autom., pp. 3223-3230, 2017.
8.
E. Stumm, C. Mei, S. Lacroix, J. Nieto, M. Hutter and R. Siegwart, "Robust visual place recognition with graph kernels", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 4535-4544, 2016.
9.
Y. Su, F. Han, R. E. Harang and X. Yan, "A fast kernel for attributed graphs", Proc. SIAM Int. Conf. Data Mining, pp. 486-494, 2016.
10.
A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez and J. Garcia-Rodriguez, "A review on deep learning techniques applied to semantic segmentation", 2017.
11.
A. Valada, J. Vertens, A. Dhall and W. Burgard, "Adapnet: Adaptive semantic segmentation in adverse environmental conditions", Proc. IEEE Int. Conf. Robot. Autom., pp. 4644-4651, 2017.
12.
V. Badrinarayanan, A. Kendall and R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture for image segmentation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481-2495, Dec. 2017.
13.
S. A. Cook, "The complexity of theorem-proving procedures", Proc. ACM Symp. Theory Comput., pp. 151-158, 1971.
14.
M. J. Milford and G. F. Wyeth, "Seqslam: Visual route-based navigation for sunny summer days and stormy winter nights", Proc. IEEE Int. Conf. Robot. Autom., pp. 1643-1649, 2012.
15.
T. Cieslewski, E. Stumm, A. Gawel, M. Bosse, S. Lynen and R. Siegwart, "Point cloud descriptors for place recognition using sparse visual information", Proc. IEEE Int. Conf. Robot. Autom., pp. 4830-4836, 2016.
16.
M. Bürki, I. Gilitschenski, E. Stumm, R. Siegwart and J. Nieto, "Appearance-based landmark selection for efficient long-term visual localization", Proc. IEEE Int. Conf. Intell. Robots Syst., pp. 4137-4143, 2016.
17.
N. Sunderhauf et al., "Place recognition with convnet landmarks: Viewpoint-robust condition-robust training-free", Robot. Sci. Syst., vol. 11, 2015.
18.
W. H. Huang and K. R. Beevers, "Topological map merging", Int. J. Robot. Res., vol. 24, no. 8, pp. 601-613, 2005.
19.
D. Marinakis and G. Dudek, "Pure topological mapping in mobile robotics", IEEE Trans. Robot., vol. 26, no. 6, pp. 1051-1064, Dec. 2010.
20.
I. Kostavelis and A. Gasteratos, "Semantic mapping for mobile robotics tasks: A survey", Robot. Auton. Syst., vol. 66, pp. 86-103, 2015.
21.
S. L. Bowman, N. Atanasov, K. Daniilidis and G. J. Pappas, "Probabilistic data association for semantic slam", Proc. IEEE Int. Conf. Robot. Autom., pp. 1722-1729, 2017.
22.
N. Atanasov, M. Zhu, K. Daniilidis and G. J. Pappas, "Semantic localization via the matrix permanent", Proc. Robot. Sci Syst., pp. 1-10, 2014.
23.
B. Perozzi, R. Al-Rfou and S. Skiena, "Deepwalk: Online learning of social representations", Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Mining, pp. 701-710, 2014.
24.
G. Ros, L. Sellart, J. Materzynska, D. Vazquez and A. M. Lopez, "The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3234-3243, 2016.
25.
S. Shah, D. Dey, C. Lovett and A. Kapoor, "Airsim: High-fidelity visual and physical simulation for autonomous vehicles", Proc. Field Serv. Robot. Conf., pp. 621-635, 2017.
26.
H. Noh, S. Hong and B. Han, "Learning deconvolution network for semantic segmentation", Proc. IEEE Int. Conf. Comput. Vis., pp. 1520-1528, 2015.
Contact IEEE to Subscribe

References

References is not available for this document.