Abstract:
Presents the automatic optimal design of a fuzzy controller for an induction motor drive with vector control using two different soft-computing techniques: one based on a...Show MoreMetadata
Abstract:
Presents the automatic optimal design of a fuzzy controller for an induction motor drive with vector control using two different soft-computing techniques: one based on a genetic learning strategy, the other on an adaptive network-based fuzzy inference system algorithm. These techniques perform an automatic tuning strategy for the choice of the optimal parameters values and structures for the fuzzy controller. As a result, two different controllers are obtained. They are compared in terms of design features. Computer simulations have been carried out to compare the new controllers performances to those of a PI-based controller.
Published in: IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028)
Date of Conference: 12-15 October 1999
Date Added to IEEE Xplore: 06 August 2002
Print ISBN:0-7803-5731-0
Print ISSN: 1062-922X
References is not available for this document.
Select All
1.
P. Vas, W. Drury and A. F. Stronach, "Recent developments in artificial intelligence based drives - A review", Proc. Intelligent motion PCIM '96, pp. 415-420, 1996-May.
2.
C. Law and J. Wang, "Design and implementation of a fuzzy controller for a high performance induction motor drive", IEEE Transactions on Systems Man and Cybernetics, pp. 120-124, July/August 1991.
3.
C. C. A. Vrey, I. S. Shaw, J. D. Van Wyk and J. M. Barnard, "A new approach to control non-standard induction machines using a fuzzy logic algorithm", Proc. IECON, pp. 1315-1319, 1994.
4.
A. Cataliotti and G. Poma, "A fuzzy logic approach for easy and robust control of an induction motor", Proc. EPE '97, vol. 2, pp. 421-425, 1997-September-8-10.
5.
T.-C. Minh, J. L. S. Neto and L.-H. Hoang, "Control of high performance induction motor drives using fuzzy logic", Proc. EUFIT '96, pp. 312-317, 1996-September-2-5.
6.
E. Galvan, F. Barrero, M. A. Aguirre, A. Torralba and L. G. Franquelo, "A robust Speed Control of AC Motor drives based on Fuzzy Reasoning", IEEE/IAS Annual Meeting, pp. 2055-2058, 1993.
7.
C. Von Altrock and S. Beierke, "Fuzzy logic enhanced control of an AC induction motor with a DSP", Proc. EUFIT '96, pp. 215-221, 1996-September-2-5.
8.
P. Vas, Vector control of ac machines, UK:Oxford University Press, 1992.
9.
R. Krishnan and A. S. Bharadwaj, "A Review of Parameter Sensitivity and Adaptation in Indirect Vector Controlled Induction Motor Drive Systems", IEEE ΡE, vol. 6, no. 4, pp. 695-703, 1991.
10.
A. Cataliotti and G. Poma, "A Rotor Resistance Adaptation Method for an Induction Motor Drive", Proc. SPEEDAM'98, pp. 3.17-20, 1998-June-3-5.
11.
A. Cataliotti and G. Poma, "A Fuzzy-Logic control system for an induction motor drive compensating variations of rotor resistance", Proc. PEMC98, vol. 5, pp. 213-217, 1998-September-8-10.
13.
D. Driankov, H. Hellendoorn and M. Reinfrank, An Introduction so Fuzzy Control, Berlin:Springer - Verlag, 1993.
14.
T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modelling and control", IEEE Trans. Syst. Man Cybern., vol. 15, pp. 116-132, 1985.
15.
D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, New York:Addison Wesley Publishing Company, 1989.
16.
J.-S. R. Jang, "ANFIS: Adaptive-Network-Based Fuzzy Inference System", IEEE Trans. Syst. Man Cybern., vol. 23, pp. 665-685, 1993.