Abstract:
The sensitivity and current resolution of an overlapping tube cryogenic current comparator (CCC) are calculated in terms of an equivalent electrical circuit model. The ke...Show MoreMetadata
Abstract:
The sensitivity and current resolution of an overlapping tube cryogenic current comparator (CCC) are calculated in terms of an equivalent electrical circuit model. The key features for optimum design are given, and theoretical predictions are compared with experiments. We propose that optimum current resolution will be achieved when the overlapping tube is used as single turn sensing coil directly connected to a SQUID, which must have its input coil inductance matched to that of the overlapping tube. The possibility of including a strip wound ferromagnetic core is also analyzed. It is shown that a "fractional turn loop" sensing coil may enhance the CCC sensitivity above that of the SQUID.
Published in: IEEE Transactions on Instrumentation and Measurement ( Volume: 48, Issue: 6, December 1999)
DOI: 10.1109/19.816153
References is not available for this document.
Select All
1.
"Use of a cryogenic current comparator to determine the quantized Hall resistance in a silicon MOSFET", Precision Measurement and Fundamental Constants II, pp. 543-548, 1984.
2.
F. Delahaye and D. Reymann, "Progress in resistance ratio measurements using a cryogenic current comparator at LCIE", IEEE Trans. Instrum. Meas., vol. 34, pp. 316-319, Apr. 1985.
3.
A. Hartland, "Development of a cryogenic current comparator for the measurement of small currents", Proc. Int. Conf. Electromagnetic Measurements, pp. 1-4, 1993.
4.
K. Harvey, "A precise low temperature dc ratio transformer", Rev. Sci. Instrum., vol. 43, no. 11, pp. 1626-1629, 1972.
5.
K. Grohmann, H. D. Hahlbohm, H. Lu¨bbig and H. Ramin, A current comparator with superconducting shield, no. 79, pp. 204, 1972.
6.
J. Clarke, W. E. Tennant and D. Woody, "Impedance matching a Josephson galvanometer by means of a superconducting transformer", J. Appl. Phys., vol. 42, no. 10, pp. 3859-3865, 1971.
7.
D. B. Sullivan and R. F. Dziuba, "Low temperature direct current comparators", Rev. Sci. Instrum., vol. 45, pp. 517-519, 1974.
8.
K. Grohmann, H. D. Hahlbohm, H. Lu¨bbig and H. Ramin, Construction principles and properties of ironless DC and AC current comparators with superconducting shields, no. 83, pp. 313-318, 1973.
9.
H. Seppa¨, "The ratio error of the overlapped-tube cryogenic current comparator", IEEE Trans. Instrum. Meas., vol. 39, no. 5, pp. 689-697, 1990.
10.
K. Grohmann, H. D. Hahlbohm and D. Hechtfischer, "The cryo current comparator as a calculable dc ratio standard", IEEE Trans. Instrum. Meas., vol. IM-28, pp. 205-211, 1979.
11.
Oxford Instruments (OI) model \$phi_0\$ rf SQUID: \$L = 1.9; mu\$H \$M_{SQ} = 15\$ nH intrinsic energy resolution \$= 9 times 10^{-29}\$ J/Hz (white region) corner frequency \${char'074}0.1\$ Hz.
12.
J. Sese´, F. Lera, A. Camo´n and C. Rillo, "Calculation of effective inductances of superconducting devices. Application to the cryogenic current comparator", IEEE Trans. Appl. Superconduct., vol. 9, no. 1, pp. 58-62, 1999.
13.
M. D. Early and K. Jones, "Optimum sensitivity of an externally shielded cryogenic current comparator", IEEE Trans. Instrum. Meas., vol. 46, pp. 459-462, 1997.
14.
K. Grohmann and D. Hechtfischer, Kryostromkomparatoren als pra¨zisionsstandards fu¨r rationale Gleich- und Wechselstromverha¨ltnisse, no. 92, pp. 328-344, 1982.
15.
S. Q. Xue, P. Gutmann and V. Kose, "Optimum dc current resolution for high-source resistances with a dc transformer matched rf SQUID", Rev. Sci. Instrum., vol. 52, no. 12, pp. 1901-1902, 1981.
16.
P. Gutmann and V. Kose, "Optimum dc current resolution of a ferromagnetic-core flux transformer coupled SQUID instrument", IEEE Trans. Instrum. Meas., vol. IM-36, pp. 267-270, 1987.
17.
Quantum Design (QD) dc SQUID: \$L = 1.9; mu\$H \$M_{SQ} = 10\$ nH intrinsic energy resolution \$= 3 times 10^{-31}\$ J/Hz (white region) corner frequency \${char'074}0.3\$ Hz.
18.
S. Vitale, R. Tommasini, M. Cerdonio, M. Bonaldi, A. Cavalleri and G. Durin, "Magnetic viscosity thermal relaxation and thermal equilibrium noise in Co-based amorphous alloys at millikelvin temperatures", J. Appl. Phys., vol. 72, no. 10, pp. 4820-4825, 1992.
19.
G. Durin, P. Falferi, M. Cerdonio, G. A. Prodi and S. Vitale, " Low temperature properties of soft magnetic materials: Magnetic viscosity and \$1/f\$ thermal noise ", J. Appl. Phys., vol. 73, no. 10, pp. 5363-5365, 1993.
20.
O. V. Snigirev, Y. V. Maslennikov, S. Vitale, M. Cerdonio and G. A. Prodi, "Thermal magnetic noise in a strip wound crystalline ferromagnetic core at 4.2 K", J. Appl. Phys., vol. 79, no. 2, pp. 960-962, 1996.
21.
\$langle phi^2rangle = smallint^{f + Delta f}_f; phi^2; df\$ where \$phi^2\$ is the spectral density and \$Delta f\$ the bandwidth.
22.
S. Barbanera, P. Carelli, I. Modena and G.L. Romani, " A SQUID device for ac current measurements down to \$10^{-14}\$ A ", J. Appl. Phys., vol. 49, no. 2, pp. 905-909, 1978.
23.
H. J. M. ter Brake, SQUID magnetometers, pp. 117-133, 1986.
24.
A. Zieba, "Image and sample geometry effects in SQUID magnetometers", Rev. Sci. Instrum, vol. 64, no. 12, pp. 3357-3375, 1993.
25.
G. T. Symm, "Design of a cryogenic current comparator", Proc. Boundary Elements XIV, pp. 519-526, 1992.
26.
J. E. Zimmerman, "Sensitivity enhancement of superconducting quantum interference devices through the use of fractional-turn loops", J. Appl. Phys., vol. 42, no. 11, pp. 4483-4487, 1971.
27.
J. Sese´, A. Camo´n, C. Rillo, M. G. H. Hiddink, L. Vargas, M. J. van Duuren, et al., "Low input coil inductance SQUID's for cryogenic current comparator applications", IEEE Trans. Appl. Superconduct., vol. 9, no. 2, pp. 3487-3490, 1999.
28.
J. Sese´, G. Rietveld, A. Camo´n, C. Rillo, L. Vargas, G. C. S. Brons, et al., "Design and realization of an optimal current sensitive CCC", IEEE Trans. Instrum. Meas., vol. 48, pp. 370-374, Apr. 1999.
29.
Quantum design model low \$L\$ uhf SQUID: \$L = 0.8; mu\$H \$M_{SQ} = 14\$ nH intrinsic energy resolution \$= 2 times 10^{-29}\$ J/Hz (white region) corner frequency \${char'074}0.5\$ Hz.
30.
H. Seppa¨, Dig. CPEM'80, pp. 173, 1980.