Abstract:
A model of object shape by nets of medial and boundary primitives is justified as richly capturing multiple aspects of shape and yet requiring representation space and im...Show MoreMetadata
Abstract:
A model of object shape by nets of medial and boundary primitives is justified as richly capturing multiple aspects of shape and yet requiring representation space and image analysis work proportional to the number of primitives. Metrics are described that compute an object representation's prior probability of local geometry by reflecting variabilities in the net's node and link parameter values, and that compute a likelihood function measuring the degree of match of an image to that object representation. A paradigm for image analysis of deforming such a model to optimize a posteriori probability is described, and this paradigm is shown to be usable as a uniform approach for object definition, object-based registration between images of the same or different imaging modalities, and measurement of shape variation of an abnormal anatomical object, compared with a normal anatomical object. Examples of applications of these methods in radiotherapy, surgery, and psychiatry are given.
Published in: IEEE Transactions on Medical Imaging ( Volume: 18, Issue: 10, October 1999)
DOI: 10.1109/42.811263
References is not available for this document.
Select All
1.
J. E Besag, "On the statistical analysis of dirty pictures", J. R. Stat. Soc. B, vol. 48, pp. 259-302, 1986.
2.
H. Blum, "A new model of global brain function", Perspectives Biol. Med., vol. 10, pp. 381-407, 1967.
3.
H. Blum and R. N. Nagel, "Shape description using weighted symmetric axis features", Pattern Recognit., vol. 10, pp. 167-180, 1978.
4.
F. L. Bookstein, Morphometric Tools for Landmark Data: Geometry and Biology., 1991.
5.
C. A. Burbeck and S. M. Pizer, "Object representation by cores: Identifying and representing primitive spatial regions", Vision Research, vol. 35, no. 13, pp. 1917-1930, 1995.
6.
C. A. Burbeck, S. M. Pizer, B. S. Morse, D. Ariely, G. Zauberman and J. Rolland, "Linking object boundaries at scale: A common mechanism for size and shape judgements", Vision Research., vol. 36, no. 3, pp. 361-372, 1996.
7.
D. Chen, Volume rendering guided by multiscale medial models.
8.
G. Christensen, S. Joshi and M. Miller, "Volumetric transformation of brain anatomy", IEEE Trans. Med. Imag., vol. 16, pp. 864-867, Dec. 1997.
9.
"Left ventricular wall motion tracking via deformable shape loci", Proc. Computer Assisted Radiology and Surgery CAR97, pp. 271-276, 1997.
10.
"The use of active shape models for locating structures in medical images", Information Processing in Medical Imaging, vol. 687, pp. 33-47, 1993.
11.
D. Eberly, "Chapter 14: A differential approach to anisotropic diffusion", Geometry-Driven Diffusion in Computer Vision., pp. 371-392, 1994.
12.
D. S. Fritsch, E. L. Chaney, A. Boxwala, M. J. McAuliffe, S. Raghavan, A. Thall, et al., "Core-based portal image registration for automatic radiotherapy treatment verification", Int. J. Radiation Oncol. Biol. Phys. (Special Issue on Conformal Therapy), vol. 33, no. 5, pp. 1287-1300, 1995.
13.
D. S. Fritsch, L. Yu, V. Johnson, M. J. McAuliffe, S. M. Pizer and E. L. Chaney, "A probabilistic approach using deformable organ models for automatic definition of normal anatomical structures for 3D treatment planning", Int. J. Radiation Oncol. Biol. Phys., vol. 36, supp. 1, pp. 187, 1996.
14.
"Segmentation of medical image objects using deformable shape loci", Proc. Information Processing Medical Imaging (IPMI97), vol. 1230, pp. 127-140, 1997.
15.
F. S. Frome, A psychophysical study of shape alignment, 1972.
16.
U. Grenander and M. I. Miller, "Representations of knowledge in complex systems", J. R. Stat. Soc., vol. 56, pp. 549-603, 1994.
17.
"Three-dimensional model-based segmentation", Proc. Workshop on Biomedical Image Analysis, pp. 4-13, 1998.
18.
D. G. Kendall, "A survey of the statistical theory of shape", Stati. Sci., vol. 4, pp. 87-120, 1984.
19.
J. J. Koenderink, "The structure of images", Bio. Cybern., vol. 50, pp. 363-370, 1984.
20.
"A hierarchical feature based deformation model applied to 4d cardiac SPECT data", Proc. Information Processing Medical Imaging (IPMI 99), vol. 1613, pp. 266-279, 1999.
21.
M. Leyton, Symmetry Causality Mind., 1992.
22.
T. Lindeberg and B. M. ter Haar Romeny, "Chapter 1: Linear scale-space I: Basic theory and Chapter 2: Linear scale-space II: Early visual operations", Geometry-Driven Diffusion in Computer Vision., pp. 1-72, 1994.
23.
"3D/2D registration via skeletal near-projective invariance in tubular objects", Medical Image Computing and Computer-Assisted Intervention MICCAI98, vol. 1496, pp. 953-963, 1998.
24.
"Surgical instrument guidance using synthesized anatomical structures", CVRMed-MRCAS97, vol. 1205, pp. 99-108, 1997.
25.
B. S. Morse, S. M. Pizer, D. T. Puff and C. Gu, "Zoom-invariant vision of figural shape: Effects on cores of image disturbances", Comp. Vision Image Understanding, vol. 69, pp. 72-86, 1998.
26.
S. M. Pizer, D. Eberly, B. S. Morse and D. S. Fritsch, "Zoom-invariant vision of figural shape: The mathematics of cores", Comp. Vision Image Understanding, vol. 69, pp. 55-71, 1998.
27.
Mathematical Morphology and Its Applications to Image Processing, pp. 139-150, 1998.
28.
J. Psotka, "Perceptual processes that may create stick figures and balance", J. Psychol.: Human Perception Performance, vol. 4, pp. 101-111, 1978.
29.
L. H. Staib and J. S. Duncan, "Boundary finding with parametrically deformable models", IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp. 1061-1075, Nov. 1992.
30.
L. H. Staib and J. S. Duncan, "Model-based deformable surface finding for medical images", IEEE Trans Med. Imag., vol. 15, pp. 720-731, Oct. 1996.