Abstract:
Discusses analysis and synthesis techniques for robust pole placement in linear matrix inequality (LMI) regions, a class of convex regions of the complex plane that embra...Show MoreMetadata
Abstract:
Discusses analysis and synthesis techniques for robust pole placement in linear matrix inequality (LMI) regions, a class of convex regions of the complex plane that embraces most practically useful stability regions. The focus is on linear systems with static uncertainty on the state matrix. For this class of uncertain systems, the notion of quadratic stability and the related robustness analysis tests are generalized to arbitrary LMI regions. The resulting tests for robust pole clustering are all numerically tractable because they involve solving linear matrix inequalities (LMIs) and cover both unstructured and parameter uncertainty. These analysis results are then applied to the synthesis of dynamic output-feedback controllers that robustly assign the closed-loop poles in a prescribed LMI region. With some conservatism, this problem is again tractable via LMI optimization. In addition, robust pole placement can be combined with other control objectives, such as H/sub 2/ or H/sub /spl infin// performance, to capture realistic sets of design specifications. Physically motivated examples demonstrate the effectiveness of this robust pole clustering technique.
Published in: IEEE Transactions on Automatic Control ( Volume: 44, Issue: 12, December 1999)
DOI: 10.1109/9.811208
References is not available for this document.
Select All
1.
J. Ackermann, Robust Control: Systems with Uncertain Physical Parameters, 1993.
2.
F. Alizadeh, J.-P. Haeberly, M. V. Nayakkankuppam, M. L. Overton and S. Schmieta, SDPpack Version 0.9 Beta for Matlab 5.0Semidefinite-Quadratic-Linearly Constrained Programs, 1997.
3.
D. Arzelier, J. Bernussou and G. Garcia, "Pole assignment of linear uncertain systems in a sector via a Lyapunov-type approach", IEEE Trans. Automat. Contr., vol. 38, pp. 1128-1131, 1993.
4.
B. R. Barmish, New Tools for Robustness of Linear Systems, 1994.
5.
S. P. Bhattacharyya, Robust Stabilization Against Structured Perturbations, vol. 99, 1987.
6.
S. Boyd and L. El Ghaoui, "Method of centers for minimizing generalized eigenvalues", Lin. Alg. Applicat., pp. 63-111, 1993.
7.
S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, vol. 15, 1994.
8.
R. Y. Chiang and M. G. Safonov, "H_infty synthesis using a bilinear pole shifting transform ", AIAA J. Guid. Contr. Dyn., vol. 15, pp. 1111-1117, Sept. 1992.
9.
M. Chilali and P. Gahinet, "H_infty design with pole placement constraints: An LMI approach ", IEEE Trans. Automat. Contr., pp. 358-367, 1996.
10.
J. H. Chou, S. J. Ho and I. R. Horng, "Pole assignment robustness in a specified disc", Syst. Contr. Lett., vol. 16, pp. 41-44, 1991.
11.
E. Feron, P. Apkarian and P. Gahinet, "Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions", IEEE Trans. Automat. Contr., vol. 41, pp. 1041-1046, July 1996.
12.
A. L. Fradkov and V. A. Yakubovich, " The {cal S} -procedure and duality relations in nonconvex problems of quadratic programming ", Vestnik Leningrad Univ. Math., vol. 6, pp. 101-109, 1979.
13.
P. Gahinet, P. Apkarian and M. Chilali, "Parameter-dependent Lyapunov functions for real parametric uncertainty", IEEE Trans. Automat. Contr., vol. 41, pp. 436-442, Mar. 1996.
14.
P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, The LMI Control Toolbox, 1995.
15.
G. Garcia, J. Daafouz and J. Bernussou, "Output feedback disk pole assignment for systems with positive real uncertainty", IEEE Trans. Automat. Contr., vol. 41, no. 9, pp. 1385-1391, 1996.
16.
G. Garcia and J. Bernussou, "Pole assignment for uncertain systems in a specified disk by state feedback", IEEE Trans. Automat. Contr., vol. 40, pp. 184-190, 1995.
17.
A. Graham, Kronecker Product and Matrix Calculus with Applications, 1981.
18.
S. Gutman and E. I. Jury, "A general theory for matrix root clustering in subregions of the complex plan", IEEE Trans. Automat. Contr., vol. AC-26, pp. 853-863, 1981.
19.
W. M. Haddad and D. S. Bernstein, "Parameter-dependent Lyapunov functions constant real parameter uncertainty and the Popov criterion in robust analysis and synthesis", Proc. CDC, pp. 2274, 2632, Dec. 1991.
20.
W. M. Haddad and D. S. Bernstein, "Controller design with regional pole constraints", IEEE Trans. Automat. Contr., vol. 37, pp. 54-61, 1992.
21.
Y. Huang and W. Lu, "An LFT approach to autopilot design for missiles", Proc. Amer. Contr. Conf., pp. 2990-2994, June 1996.
22.
Y. T. Juang, "A fundamental multivariable robustness theorem for robust eigenvalue assignment", IEEE Trans. Automat. Contr., vol. 25, pp. 588-591, 1988.
23.
J. Kautsky, N. K. Nichols and P. Van Dooren, "Robust pole assignment in linear state feedback", Int. J. Contr., vol. 41, pp. 1129-1155, 1985.
24.
P. P. Khargonekar, I. R. Petersen and K. Zhou, " Robust stabilization of uncertain linear systems: Quadratic stabilizability and H_{infty} control theory ", IEEE Trans. Automat. Contr., vol. 35, pp. 356-361, 1990.
25.
J. M. Martin, "State space measures of robustness of pole locations for structured and unstructured perturbations", Syst. Contr. Lett., vol. 16, pp. 423-433, 1991.
26.
I. Masubuchi, A. Ohara and N. Suda, "LMI-based controller synthesis: A unified formulation and solution", Int. J. Robust Nonlin. Contr..
27.
A. Megretski and A. Rantzer, "System analysis via integral quadratic constraints", IEEE Trans. Automat. Contr., vol. 42, pp. 819-830, 1997.
28.
A. S. Milfont, S. A. A. Filho and J. C. Geromel, "H_2 robust control design with regional pole placement for discrete time linear systems ", Proc. 3rd Eur. Contr. Conf. ECC95, pp. 3388-3393.
29.
A. Nemirovskii and P. Gahinet, "The projective method for solving linear matrix inequalities", Math. Programming Series B, vol. 77, pp. 163-190, 1997.
30.
Y. Nesterov and A. Nemirovskii, "Interior point polynomial algorithms in convex programming: Theory and applications", SIAM Studies Appl. Math., vol. 13, 1994.