Abstract:
A geometric-vision approach to color constancy and illuminant estimation is presented in this paper. We show a general framework, based on ideas from the generalized prob...Show MoreMetadata
Abstract:
A geometric-vision approach to color constancy and illuminant estimation is presented in this paper. We show a general framework, based on ideas from the generalized probabilistic Hough transform, to estimate the illuminant and reflectance of natural images. Each image pixel "votes" for possible illuminants and the estimation is based on cumulative votes. The framework is natural for the introduction of physical constraints in the color constancy problem. We show the relationship of this work to previous algorithms for color constancy and present examples.
Published in: IEEE Transactions on Pattern Analysis and Machine Intelligence ( Volume: 21, Issue: 11, November 1999)
DOI: 10.1109/34.809114
References is not available for this document.
Select All
1.
D. Brainard and B.A. Wandell, "Analysis of the Retinex Theory of Color Vision", J. Optical Soc. Am. A, vol. 3, pp. 1,651-1,661, 1986.
2.
D. Brainard, B.A. Wandell and W.B. Cowan, "Black Light: How Sensors Filter Spectral Variation of the Illuminant", IEEE Trans. Biomedical Eng., vol. 36, pp. 140-149, 1989.
3.
G. Buchsbaum, "A Spatial Processor Model for Object Color Perception", J. Franklin Inst., vol. 310, pp. 1-26, 1980.
4.
J. Cohen, "Dependency of the Spectral Reflectance Curves of the Munsell Color Chips", Psychoneurological Science, vol. 1, pp. 369-370, 1964.
5.
M. DZmura and G. Iverson, "Color Constancy I: Basic Theory of Two-Stage Linear Recovery of Spectral Descriptions for Lights and Surfaces", J. Optical Soc. Am. A, vol. 10, pp. 2,148-2,165, 1993.
6.
M. DZmura and G. Iverson, "Color Constancy II: Results for Two-Stage Linear Recovery of Spectral Descriptions for Lights and Surfaces", J. Optical Soc. Am. A, vol. 10, pp. 2,166, 1993.
7.
M. DZmura and G. Iverson, "Color Constancy III: General Linear Recovery of Spectral Descriptions for Lights and Surfaces", J. Optical Soc. Am. A, vol. 11, pp. 2,389-2,400, 1994.
8.
E.H. Land, "Color Vision and the Natural Image", Proc. Natl Academy of Science USA, vol. 80, pp. 115-129, 1959.
9.
L.T. Maloney, "Evaluation of Linear Models of Surface Spectral Reflectance with Small Number of Parameters", J. Optical Soc. Am. A, vol. 3, pp. 1,673-1,683, 1986.
10.
G. Sapiro, "Bilinear Voting", Proc. Intl Conf. Computer Vision, 1998-Jan.
11.
D. Shaked, O. Yaron and N. Kiryati, "Deriving Stopping Rules for the Probabilistic Hough Transform by Sequential Analysis", Computer Vision and Image Understanding, vol. 63, pp. 512-526, 1996.
12.
H.J. Trusell and M.J. Vrhel, "Estimation of Illuminant for Color Correction", Proc. ICASSP, pp. 2,513-2,516, 1991.
13.
S. Ullman and R. Basri, "Recognition by Linear Combination of Models", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, pp. 992-1,006, 1991.
14.
M.J. Vrhel, R. Gershon and L.S. Iwan, "Measurement and Analysis of Object Reflectance Spectra", Color Research and Application, vol. 19, pp. 4-9, 1994.
15.
G. Wyszecki and W.S. Stiles, Color Science: Concepts and Methods Qualitative Data and Formulae., 1992.
16.
M. DZmura, G. Iverson and B. Singer, "Probabilistic Color Constancy", Geometric Representations of Perceptual Phenomena, 1995.
17.
G.D. Finlayson, "Color Constancy in Diagonal Chromaticity Space", Proc. Intl Conf. Computer Vision, pp. 218-223, 1995.
18.
G.D. Finlayson, M.S. Drew and B.F. Funt, "Spectral Sharpening: Sensor Transformations for Improved Color Constancy", J. Optical Soc. Am. A, vol. 11, pp. 1,553-1,563, 1994.
19.
G.D. Finlayson, P.M. Hubel and S. Hordley, "Color by Correlation", Proc. IS Fifth Color Imaging Conf., 1997-Nov.
20.
W.T. Freeman and D. Brainard, "Bayesian Decision Theory the Maximum Local Mass and Color Constancy", Proc. Intl Conf. Computer Vision, pp. 210-217, 1995.
21.
W.T. Freeman and J.B. Tenenbaum, "Learning Bilinear Models for Two-Factor Problems in Vision", Proc. Computer Visualization and Pattern Recognition 97, 1997-June.
22.
G. Healey and L. Wang, "The Illumination-Invariant Recognition of Texture in Color Images", J. Optical Soc. Am. A, vol. 12, pp. 1,877-1,883, 1995.
23.
B.K.P.H. Horn, "Determining Lightness from an Image", Computer Graphics and Image Processing, vol. 3, pp. 277-299, 1974.
24.
D.B. Judd, D.L. MacAdam and G. Wyszecki, "Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature", J. Optical Soc. Am., vol. 54, pp. 1,031-1,040, 1964.
25.
G.J. Klinker, S.A. Shafer and T. Kanade, "The Measurement of Highlights in Color Images", Intl J. Computer Vision, vol. 2, pp. 7-32, 1988.
26.
D. Brainard, "Colorimetry", Handbook of Optics: Fundamentals Techniques and Design, 1995.
27.
B. Buchberger, "Grbner Bases: An Algorithmic Method in Polynomial Ideal Theory", Multidimensional Systems Theory, 1988.
28.
R.O. Duda and P.E. Hart, Pattern Recognition and Scene Analysis., 1973.
29.
J.J. Koenderink and A.J. van Doorn, "The Generic Bilinear Calibration-Estimation Problem", Intl J. Computer Vision, vol. 33, pp. 217-234, 1997.
30.
L.T. Maloney and B.A. Wandell, "A Computational Model for Color Constancy", J. Optical Soc. Am. A, vol. 3, pp. 29-33, 1986.