Loading [MathJax]/extensions/MathMenu.js
Parametric Optimum Design of a Graphene-Based Thermionic Energy Converter | IEEE Journals & Magazine | IEEE Xplore

Parametric Optimum Design of a Graphene-Based Thermionic Energy Converter


Abstract:

A new model of the thermionic energy converter (TEC) configured with the graphene-based cathode is proposed, which includes the thermal radiation between the cathode and ...Show More

Abstract:

A new model of the thermionic energy converter (TEC) configured with the graphene-based cathode is proposed, which includes the thermal radiation between the cathode and the anode electrodes and the heat losses from the anode to the environment. Analytic expressions for the power output density and efficiency of the TEC are derived. The performance characteristics of the TEC are analyzed by numerical calculations. It is found that the maximum efficiency and power density can, respectively, reach 30% and 0.575 Wcm-2 when the TEC is operated between the two heat reservoirs at temperatures 1500 and 300 K. In addition, the optimum regions of the efficiency, power density, voltage output, electric current, and anode temperature are determined. The maximum efficiency and power density of the graphene-based TEC operated at different temperatures are calculated and compared with those of the metal-based TEC. It shows that the graphene-based TEC operated at 1200-1800K displays the better performance than the metal-based TEC. The results obtained here may provide guidance for the appropriate selection of electrode materials and optimum design of practical TEC devices.
Published in: IEEE Transactions on Electron Devices ( Volume: 64, Issue: 11, November 2017)
Page(s): 4594 - 4598
Date of Publication: 06 September 2017

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Thermionic energy converters (TECs) [1], [2] are a class of devices that can conveniently convert the heat energy at relatively high temperatures [3]–[5] into electricity and have attracted considerable attention [6]–[9]. For instance, Wang et al. [10] proposed the model of the vacuum thermionic generator including internal and external irreversible heat losses and gave the optimum design criteria of the device. Gil et al. [11] presented an analytical expression for the current density across an isotype heterojunction valid for arbitrary doping concentration ratios and generalized the standard expression. Choi et al. [12] achieved a micrometer-sized thermionic electron emission source with the maximum current density of 1.2 A/cm2 with full crystallization of the LaB6. Datas [13] established a hybrid thermionic-photovoltaic converter through the combination of the thermionic and photovoltaic energy conversion and offered an alternative approach for thermal energy harvesting. Contrasted with other types of energy conversion devices, TECs have some significant advantages such as the relative simplicity of design and operation [1], high-power density [2], and without mechanically moving parts [10]. The energy conversion efficiency of a TEC is closely dependent on the materials of the cathode working at higher temperatures and the space charge effect [14]–[16]. Besides conventional metals or semiconductors as the cathode, which new materials can be used as the cathode material to more effectively implement thermionic emission? This is a new worthy issue to be investigated [17]–[20].

Select All
1.
K. A. A. Khalid, T. J. Leong and K. Mohamed, "Review on thermionic energy converters", IEEE Trans. Electron Devices, vol. 63, no. 6, pp. 2231-2241, Jun. 2016.
2.
A. H. Khoshaman, H. D. E. Fan, A. T. Koch, G. A. Sawatzky and A. Nojeh, "Thermionics thermoelectrics and nanotechnology: New possibilities for old ideas", IEEE Nanotechnol. Mag., vol. 8, no. 2, pp. 4-15, Jun. 2014.
3.
A. H. Khoshaman and A. Nojeh, "Low-pressure plasma-enhanced behavior of thermionic converters", J. Appl. Phys., vol. 120, no. 24, pp. 243302, Dec. 2016.
4.
G. Segev, D. Weisman, Y. Rosenwaks and A. Kribus, "Negative space charge effects in photon-enhanced thermionic emission solar converters", Appl. Phys. Lett., vol. 107, no. 1, pp. 013908, Jul. 2015.
5.
J. H. Lee, I. Bargatin, N. A. Melosh and R. T. Howe, "Optimal emitter-collector gap for thermionic energy converters", Appl. Phys. Lett., vol. 100, no. 17, pp. 173904, Apr. 2012.
6.
R. Albertoni, D. Pedrini, F. Paganucci and M. Andrenucci, "A reduced-order model for thermionic hollow cathodes", IEEE Trans. Plasma Sci., vol. 41, no. 7, pp. 1731-1745, Jul. 2013.
7.
H. Yuan, D. C. Riley, Z. X. Shen, P. A. Pianetta, N. A. Melosh and R. T. Howe, "Back-gated graphene anode for more efficient thermionic energy converters", Nano Energy, vol. 32, pp. 67-72, Feb. 2017.
8.
T. Liao, X. Chen, B. Lin and J. Chen, "Performance evaluation and parametric optimum design of a vacuum thermionic solar cell", Appl. Phys. Lett., vol. 108, pp. 033901, Jan. 2016.
9.
S. J. Liang, B. Liu, W. Hu, K. Zhou and L. K. Ang, "Thermionic energy conversion based on graphene van der waals heterostructures", Sci. Rep., vol. 7, Apr. 2017.
10.
Y. Wang, S. Su, B. Lin and J. Chen, "Parametric design criteria of an irreversible vacuum thermionic generator", J. Appl. Phys., vol. 114, no. 5, pp. 053502, Aug. 2013.
11.
M. Gil, J. Yang and R. N. Kleiman, "Analytical expression for thermionic transport through isotype heterojunction interfaces of arbitrary doping ratio", IEEE Trans. Electron Devices, vol. 61, no. 1, pp. 198-201, Jan. 2014.
12.
J. H. Choi et al., " Local crystallization of LaB 6 yielding compact strong thermionic electron emission source ", IEEE Electron Device Lett., vol. 34, no. 10, pp. 1322-1324, Oct. 2013.
13.
A. Datas, "Hybrid thermionic-photovoltaic converter", Appl. Phys. Lett., vol. 108, no. 14, pp. 143503, Apr. 2016.
14.
C. Kenney, K. C. Saraswat, B. Taylor and P. Majhi, "Thermionic field emission explanation for nonlinear richardson plots", IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2423-2429, Aug. 2011.
15.
A. Bellucci et al., "Buried boron doped layer for CVD diamond photo-thermionic cathodes", IEEE Trans. Nanotechnol., vol. 15, no. 6, pp. 862-866, Nov. 2016.
16.
J. R. Smith, "Increasing the efficiency of a thermionic engine using a negative electron affinity collector", J. Appl. Phys., vol. 114, no. 16, pp. 164514, Oct. 2013.
17.
J. W. Schwede et al., "Photon-enhanced thermionic emission from heterostructures with low interface recombination", Nature Commun., vol. 4, pp. 1576, Mar. 2013.
18.
J. Appenzeller, M. Radosavljević, J. Knoch and P. Avouris, "Tunneling versus thermionic emission in one-dimensional semiconductors", Phys. Rev. Lett., vol. 92, pp. 048301, Jan. 2004.
19.
G. Wu, X. Wei, S. Gao, Q. Chen and L. Peng, "Tunable graphene micro-emitters with fast temporal response and controllable electron emission", Nature Commun., vol. 7, pp. 11513, May 2016.
20.
B. K. Sarker and S. I. Khondaker, "Thermionic emission and tunneling at carbon nanotube–organic semiconductor interface", ACS Nano, vol. 6, no. 6, pp. 4993-4999, May 2012.
21.
M. Massicotte et al., "Photo-thermionic effect in vertical graphene heterostructures", Nature Commun., vol. 7, pp. 12174, Jul. 2016.
22.
K. S. Kim et al., "Atomic layer etching of graphene through controlled ion beam for graphene-based electronics", Sci. Rep., vol. 7, May 2017.
23.
J. F. Rodriguez-Nieva, M. S. Dresselhaus and L. S. Levitov, " Thermionic emission and negative \$dI/dV\$ in photoactive graphene heterostructures ", Nano Lett., vol. 15, no. 3, pp. 1451-1456, Jan. 2015.
24.
K. S. Novoselov et al., "Electric field effect in atomically thin carbon films", Science, vol. 306, no. 5696, pp. 666-669, Oct. 2004.
25.
K. S. Novoselov et al., "Two-dimensional gas of massless dirac fermions in graphene", Nature, vol. 438, no. 7065, pp. 197-200, Nov. 2005.
26.
S. Sun, L. K. Ang, D. Shiffler and J. W. Luginsland, "Klein tunnelling model of low energy electron field emission from single-layer graphene sheet", Appl. Phys. Lett., vol. 99, no. 1, pp. 013112, Jul. 2011.
27.
A. A. Balandin et al., "Superior thermal conductivity of single-layer graphene", Nano Lett., vol. 8, no. 3, pp. 902-907, Feb. 2008.
28.
S. J. Liang and L. K. Ang, "Electron thermionic emission from graphene and a thermionic energy converter", Phys. Rev. Appl., vol. 3, no. 1, pp. 014002, Jan. 2015.
29.
S. Misra, M. U. Kahaly and S. K. Mishra, "Thermionic emission from monolayer graphene sheath formation and its feasibility towards thermionic converters", J. Appl. Phys., vol. 121, no. 6, pp. 065102, Feb. 2017.
30.
M. U. Kahaly, S. Misra and S. K. Mishra, "Photo-assisted electron emission from illuminated monolayer graphene", J. Appl. Phys., vol. 121, no. 20, pp. 205110, May 2017.

Contact IEEE to Subscribe

References

References is not available for this document.