Loading [MathJax]/extensions/MathMenu.js
90 GHz CMOS Phased-Array Transmitter Integrated on LTCC | IEEE Journals & Magazine | IEEE Xplore

90 GHz CMOS Phased-Array Transmitter Integrated on LTCC


Abstract:

This paper presents the design of a 90 GHz phased-array transmitter front end on low-temperature co-fired ceramic (LTCC) technology. The monolithic microwave integrated c...Show More

Abstract:

This paper presents the design of a 90 GHz phased-array transmitter front end on low-temperature co-fired ceramic (LTCC) technology. The monolithic microwave integrated circuit components have been fabricated by the CMOS technology and flip chipped on the LTCC to realize the transmitter front end. The dc and differential hybrid IF signals are provided to the flip-chipped components through the bias and IF lines designed on the LTCC. An 1 × 4 patch antenna array has been designed for the transmitter and fabricated on the LTCC. The dc and IF signal pads on the LTCC were soldered to the designed printed circuit board pads for measurements. The measurement results show that by using a receiver horn antenna, the maximum received power at 92 GHz is -37.3 dBm at a communication distance of 1 m. The transmitter is capable of providing ±25° beam steering with respect to boresight and 20° half-power beamwidth at 90 GHz. The total power consumption of the transmitter front end is 656 mW.
Published in: IEEE Transactions on Antennas and Propagation ( Volume: 65, Issue: 12, December 2017)
Page(s): 6363 - 6371
Date of Publication: 22 August 2017

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

The increasing demand for multigigabit wireless data transfer and high-speed communication links has generated a great deal of interest in millimeter waves. Millimeter waves provide inherently a broad bandwidth which enables a high data rate transfer. Short-range applications such as near-field communications and wireless personal area networks are the good examples where millimeter and submillimeter waves could be employed [1], [2]. Millimeter-wave communication systems are currently being developed, for example, at 28, 38, and 60 GHz and -band (71–76 and 81–86 GHz) for both 5G access and backhaul systems [3]. Anticollision radar systems are also developed around 77 GHz [4].

Select All
1.
H.-J. Song and T. Nagatsuma, "Present and future of terahertz communications", IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 256-263, Sep. 2011.
2.
T. Kürner, "Towards future THz communications systems", Int. J. Terahertz Sci. Technol., vol. 5, no. 1, pp. 11-17, Mar. 2012.
3.
J. Ala-Laurinaho et al., "2-D beam-steerable integrated lens antenna system for 5G E-band access and backhaul", IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, pp. 2244-2255, Jul. 2016.
4.
J. Hatch, A. Topak, R. Schnabel, T. Zwick, R. Weigel and C. Waldschmidt, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band", IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 845-860, Mar. 2012.
5.
R. J. Mailloux, Phased Array Antenna Handbook, Norwood, MA, USA:Artech House, 2005.
6.
D. G. Kam, D. Liu, A. Natarajan, S. Reynolds, H.-C. Chen and B. A. Floyd, "LTCC packages with embedded phased-array antennas for 60 GHz communications", IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 142-144, Mar. 2011.
7.
D. G. Kam, D. Liu, A. Natarajan, S. K. Reynolds and B. A. Floyd, "Organic packages with embedded phased-array antennas for 60-GHz wireless chipsets", IEEE Trans. Compon. Packag. Manuf. Technol, vol. 1, no. 11, pp. 1806-1814, Nov. 2011.
8.
J.-L. Kuo et al., "60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flip-chip CMOS process", IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 743-756, Mar. 2012.
9.
E. Cohen, M. Ruberto, M. Cohen, O. Degani, S. Ravid and D. Ritter, "A CMOS bidirectional 32-element phased-array transceiver at 60 GHz with LTCC antenna", IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1359-1375, Mar. 2013.
10.
J.-H. Lee, N. Kidera, S. Pinel, J. Laskar and M. M. Tentzeris, "60 GHz high-gain aperture-coupled microstrip antennas using soft-surface and stacked cavity on LTCC multilayer technology", Proc. IEEE Antennas Propag. Soc. Int. Symp. (AP S/URS), pp. 1621-1624, Jul. 2006.
11.
S. Beer, L. Pires, C. Rusch, J. Paaso and T. Zwick, "A 122 GHz microstrip slot antenna with via-fence resonator in LTCC technology", Proc. 6th Eur. Conf. Antennas Propag. (EuCAP), pp. 1329-1332, Mar. 2012.
12.
C. Heine, S. Beer, C. Rusch and T. Zwick, "Via-fence antennas on LTCC for radar applications at 122 GHz", Proc. 43rd Eur. Microw. Conf. (EuMC), pp. 41-43, Oct. 2013.
13.
A. Vahdati, M. Varonen, D. Parveg, D. Karaca and K. A. I. Halonen, "Design of an 85–95-GHz differential amplifier in 28-nm CMOS FDSOI", Proc. 9th Global Symp. Millim. Waves (GSMM), pp. 1-4, Jun. 2016.
14.
C. A. Balanis, Antenna Theory: Analysis and Design, New York, NY, USA:Wiley, 2005.
15.
A. Vahdati, D. Parveg, M. Varonen, M. Kärkkäinen, D. Karaca and K. A. I. Halonen, "A 100-GHz phase shifter in 28-nm CMOS FDSOI", Proc. 10th Eur. Microw. Integr. Circuits Conf. (EuMIC), pp. 112-115, Sep. 2015.
16.
J. A. Torres, O. Otto and F. G. Pikus, Challenges for the 28 nm Half Node: Is the Optical Shrink Dead?, Monterey, CA, USA:SPIE, 2009.
17.
Y.-S. Lin, W.-C. Wen and C.-C. Wang, "13.6 mW 79 GHz CMOS up-conversion mixer with 2.1 dB gain and 35.9 dB LO-RF isolation", IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 126-128, Feb. 2014.
18.
J. Kim and Y. Kwon, "Low conversion loss 94 GHz CMOS resistive mixer", Electron. Lett., vol. 51, no. 18, pp. 1464-1466, Sep. 2015.
19.
D. Sandström, M. Varonen, M. Kärkkäinen and K. A. I. Halonen, "A W-band 65 nm CMOS transmitter front-end with 8 GHz IF bandwidth and 20 dB IR-ratio", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 418-419, Feb. 2010.
20.
A. E. I. Lamminen, J. Saily and A. R. Vimpari, "60-GHz patch antennas and arrays on LTCC with embedded-cavity substrates", IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 2865-2874, Sep. 2008.
21.
A. Lamminen and J. Säily, "Wideband stacked patch antenna array on LTCC for W-band", Proc. 5th Eur. Conf. Antennas Propag. (EUCAP), pp. 2962-2966, Apr. 2011.
22.
A. Lamminen and J. Säily, "77 GHz beam-switching high-gain end-fire antenna on LTCC", Proc. 20th Int. Conf. Appl. Electromagn. Commun. (ICECom), pp. 1-4, Sep. 2010.

Contact IEEE to Subscribe

References

References is not available for this document.